Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Polymer Engineering

Editor-in-Chief: Grizzuti, Nino

IMPACT FACTOR 2018: 1.072

CiteScore 2018: 1.17

SCImago Journal Rank (SJR) 2018: 0.282
Source Normalized Impact per Paper (SNIP) 2018: 0.691

See all formats and pricing
More options …
Volume 34, Issue 7


The stimuli-response characters of hydrogels prepared using ultrasound

Rajabali Ebrahimi
  • Corresponding author
  • Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahnoush Ebrahimi
Published Online: 2014-06-06 | DOI: https://doi.org/10.1515/polyeng-2014-0028


The present work was an attempt to investigate the parameters that can affect the process of hydrogel formation in the presence of ultrasound. These parameters were concentrations of the reactants, the reaction medium, and acoustic factors. The monomers were acrylic acid and acrylamide, and the cross-linker was methylene bis acrylamide. Pulsed power ultrasound was irradiated to the reaction mixture from the tip of a probe unit. The swelling behaviors of the obtained hydrogels were investigated in various buffer solutions, at different temperature values, and using different ionic salts. The results show that ultrasonic irradiation significantly reduces reaction time and increases efficiency. Additionally, increasing glycerol in the solution changes the viscosity of the reaction for the better and increases the reaction rate. However, ionic strength and pH were not significantly effective in this respect. Another major finding was that increasing ultrasonic power and pulse hastens the reaction. Cationic salts were effective in this order: Na+>Ca2+>Fe3+. The hydrogel was responsive to pH, temperature, and salts. These findings provide a better understanding of hydrogel synthesis and enable us to control the pertinent parameters.

Keywords: glycerol; pH sensitive; polymeric gels; power; sonochemical polymerization


  • [1]

    Mason TJ, Lorimer JP. Applied Sonochemistry Uses of Ultrasound in Chemistry and Processing, Wiley-VCH: Weinheim, 2002.Google Scholar

  • [2]

    Tang SY, Shridharan P, Sivakumar M. Ultrason. Sonochem. 2013, 20, 485–497.PubMedGoogle Scholar

  • [3]

    Jokanovic V, Colovic B, Dutour Sikiric M, Trajkovic V. Ultrason. Sonochem. 2013, 20, 535–545.PubMedGoogle Scholar

  • [4]

    Rosiak JM, Janik I, Kadlubowski S, Kozicki M, Kujawa P, Stasica P, Ulanski P. Phys. Res. B 2003, 208, 325–330.Google Scholar

  • [5]

    Cass P, Knower W, Pereeia E, Holmes N, Hughes T. Ultrason. Sonochem. 2010, 17, 326–332.PubMedGoogle Scholar

  • [6]

    Teo BM, Prescott SW, Ashokkumar M, Grieser F. Ultrason. Sonochem. 2008, 15, 89–94.PubMedGoogle Scholar

  • [7]

    Anbarasan R, Jayaseharan J, Sudha M, Gopalan A. J. Appl. Polym. Sci. 2003, 89, 3685–3692.Google Scholar

  • [8]

    Xia H, Wang Q, Liao Y, Xu X, Baxter SM, Slone RV, Wu Sh, Swift G, Westmoreland DG. Ultrason. Sonochem. 2002, 9,151–158.PubMedGoogle Scholar

  • [9]

    Capek I, Janic Kova S, Donescu D, Sarov Y, Rangelow IW. Polym. J. 2006, 38, 264–276.Google Scholar

  • [10]

    Nie M, Wang Q, Qiu G. Ultrason. Sonochem. 2008, 15, 222–226.PubMedGoogle Scholar

  • [11]

    Qiu G, Nie M, Wang Q. Ultrason. Sonochem. 2008, 15, 269–273.PubMedGoogle Scholar

  • [12]

    Price GT. Ultrason. Sonochem. 2003, 10, 277–283.PubMedGoogle Scholar

  • [13]

    Nikitenko SI, Koltypin Yu, Pickup DM, Van-Eck ERH, Gedanken A. Ultrason. Sonochem. 2003, 10, 11–15.PubMedGoogle Scholar

  • [14]

    Sakurada I. Polymer J. 2012, 44, 5–10.Google Scholar

  • [15]

    Mende M, Petzold G, Buchhammer HM. Colloid. Polym. Sci. 2002, 280, 342–351.Google Scholar

  • [16]

    Liaqat A, Mahmood A, Muhammad U, Muhammad Y. Polym. Bull. 2014, 71, 31–46.Google Scholar

  • [17]

    Distantina S, Rochmadi, Fahrurrozi M. Wiratni. Proceedings of 3rd International Conference on Chemistry and Chemical Engineering, IPCBEE, 2012, 38.Google Scholar

  • [18]

    Mawad D, Martens PJ, Odell RA, Poole-Warren LA. Biomaterials 2007, 28, 947–955.PubMedGoogle Scholar

  • [19]

    Singh R, Murthy CN. Polym. Bull. 2014, 71, 83–92.Google Scholar

  • [20]

    Xie J, Liu X, Liang J. J. Appl. Polym. Sci. 2007, 106, 1606–1613.Google Scholar

  • [21]

    Turan E, Caykara T. J. Appl. Polym. Sci. 2007, 106, 2000–2007.Google Scholar

  • [22]

    Xiao L, Isner AB, Hilt JZ, Bhattacharyya D. J. App. Polym. Sci. 2013, 128, 1804–1814.Google Scholar

  • [23]

    Franklin DS, Guhanathan S. Polym. Bull. 2014, 71, 93–110.Google Scholar

  • [24]

    Park J, Kim D. J. App. Polym. Sci. 2009, 115, 3434–3441.Google Scholar

  • [25]

    Sachin RSh. Ultrason. Sonochem. 2013, 20, 914–923.Google Scholar

  • [26]

    Lawal OS, Storz J, Storz H, Lohmann D, Lechner D, Kulicke WM. Europ. Polym. J. 2009, 45, 3399–3408.Google Scholar

  • [27]

    Pars R, Quijada-Garrido I. Europ. Polym. J. 2009, 45, 3418–3425.Google Scholar

  • [28]

    Wang X, Kluge JA, Leisk GG, Kaplan DL. Biomaterials 2008, 29, 1054–1064.PubMedGoogle Scholar

  • [29]

    Iqbal MC, Amin M, Ahmad N, Halib N, Ahmad I. Carbohydrate Polym. 2012, 88, 465–473.Google Scholar

  • [30]

    Norisuye T, Strybulevych A, Scanlon M, Page J. Macromol. Symp. 2006, 242, 208–215.Google Scholar

  • [31]

    Ebrahimi R, Ghasemzadeh Mohammadi H. Macromol. Ind. J. 2011, 7, 49–53.Google Scholar

  • [32]

    Ebrahimi R. Iran. Polym. J. 2012, 21, 11–20.Google Scholar

  • [33]

    Ebrahimi R. Res. Rev. BioSci. 2012, 6, 134–141.Google Scholar

  • [34]

    Ebrahimi R, Tarhande G, Rafiei S. Org. Chem. Int. 2012, 20112, 5, ID 343768, DOI: 10.1155/2012/343768.CrossrefGoogle Scholar

  • [35]

    Ebrahimi R, Tarhandeh G, Rafiey S, Narjabadi M, Khani H. J. Korean Chem. Soc. 2012, 56, 92–101.Google Scholar

  • [36]

    Wei L, Cai Ch, Lin J, Chen T. Biomaterials 2009, 30, 2606.PubMedGoogle Scholar

  • [37]

    Li W, Zhao H, Teasdale PR, John R, Zhang S. React. Func. Polym. 2002, 52, 31–41.Google Scholar

  • [38]

    Yang J, Luoc K, Li D, Yuc Sh, Caib J, Chend L, Duc Y. Int. J. Biol. Macromol. 2013, 52, 25–31.PubMedGoogle Scholar

  • [39]

    Mohy Eldin MS, El-Sherif HM, Soliman EA, Elzatahry AA, Omer AM. J. Appl. Polym. Sci. 2011, 122, 469–479.Google Scholar

  • [40]

    El-Mohdy, H.L.A. Polym. Eng. Sci. 2013, DOI: 10.1002/pen.23831.CrossrefGoogle Scholar

  • [41]

    Pourjavadi A, Barzegar S, Zeidabadi F. React. Funct. Polym. 2007, 67, 644–654.Google Scholar

  • [42]

    Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC. Eur. Polym. J. 2012, 48, 454–463.Google Scholar

About the article

Corresponding author: Rajabali Ebrahimi, Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, Iran, e-mail:

Received: 2014-02-05

Accepted: 2014-05-06

Published Online: 2014-06-06

Published in Print: 2014-09-01

Citation Information: Journal of Polymer Engineering, Volume 34, Issue 7, Pages 625–632, ISSN (Online) 2191-0340, ISSN (Print) 0334-6447, DOI: https://doi.org/10.1515/polyeng-2014-0028.

Export Citation

©2014 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in