Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Maritime Research

The Journal of Gdansk University of Technology

4 Issues per year

IMPACT FACTOR 2016: 0.776

CiteScore 2016: 0.98

SCImago Journal Rank (SJR) 2015: 0.317
Source Normalized Impact per Paper (SNIP) 2015: 1.050

Open Access
See all formats and pricing
More options …
Volume 23, Issue 2


Numerical Model of SO2 Scrubbing with Seawater Applied to Marine Engines

M. I. Lamas / C. G. Rodríguez / J. D. Rodríguez / J. Telmo
Published Online: 2016-06-30 | DOI: https://doi.org/10.1515/pomr-2016-0019


The present paper proposes a CFD model to study sulphur dioxide (SO2) absorption in seawater. The focus is on the treatment of marine diesel engine exhaust gas. Both seawater and distilled water were compared to analyze the effect of seawater alkalinity. The results indicate that seawater is more appropriate than distilled water due to its alkalinity, obtaining almost 100% cleaning efficiency for the conditions analyzed. This SO2 reduction meets the limits of SOx emission control areas (SECA) when operating on heavy fuel oil. These numerical simulations were satisfactory validated with experimental tests. Such data are essential in designing seawater scrubbers and judging the operating cost of seawater scrubbing compared to alternative fuels.

Keywords: Sulphur dioxide; SO2; scrubbers; CFD


  • 1. Lamas, M.I.; Rodríguez, C.G.; Telmo, J.; Rodríguez, J.D. Numerical analysis of emissions from marine engines using alternative fuels. Submitted to Polish Maritime Research.Google Scholar

  • 2. Zhang, D.N.; Chen, Q.Z.; Zhao, Y.X.; Maeda, Y.; Tsujino, Y. Stack gas desulfurization by seawater in Shanghai. Water, Air & Soil Pollution, vol. 130, pp. 271-276, 2001.Google Scholar

  • 3. Oikawa, K.; Yongsiri, C.; Takeda, K.; Harimoto, T. Environmental Progress, vol. 22, pp. 67-73, 2003.CrossrefGoogle Scholar

  • 4. Williams, P.J. Use of seawater as makeup water for wet flue gas desulfurization systems. EPRI-DOE-EPA Combined Utility Air Pollution Control Symphosium, August 16-20. Atlanta, Georgia, USA, 1999.Google Scholar

  • 5. Sun, X.; Meng, F.; Yang, F. Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor. Journal of Membrane Science, vol. 312, pp. 6-14, 2008.Web of ScienceGoogle Scholar

  • 6. Darake, S.; Rahimi, A.; Hatamipour, M.S.; Hamzeloui, P. SO2 removal by seawater in a packed-bed tower: experimental study and mathematical modelling. Separation Science and Technology, vol. 49, pp. 988-998, 2014.Google Scholar

  • 7. Caiazzo, G.; Langella, G.; Miccio, F.; Scala, F. An experimental investigation on seawater SO2 scrubbing for marine application. Environmental Progress & Sustainable Energy, vol. 32, pp. 1179-1186, 2013.CrossrefWeb of ScienceGoogle Scholar

  • 8. Andreasen, A.; Mayer, S. Use of seawater scrubbing for SO2 removal from marine engine exhaust gas. Energy & Fuels, vol. 21, pp. 3274-3279, 2007.CrossrefWeb of ScienceGoogle Scholar

  • 9. Sukheon, A.; Nishida, O. New application of seawater and electrolyze seawater in air pollution control of marine diesel engine. JMSE International Journal, Series B: Fluids and Thermal Engineering, vol. 46, pp. 206-213, 2003.Google Scholar

  • 10. Sverdrup, H. U.; Johnson, M. W.; Fleming, R. H. The Oceans Their Physics, Chemistry, and General Biology; Prentice-Hall: New York, 1942.Google Scholar

  • 11. Dickson, A. G.; Goyet, C., Eds.; Handbook of Methods for the Analysis of the various Parameters of the Carbon Dioxide System in Sea Water, Version 2, ORNL/CDIAC-74; U.S. Department of Energy: Washington, DC, 1994.Google Scholar

  • 12. Sander, R. Henry’s Law Constants. In NIST Chemistry Webbook; NIST Standard Reference Database Number 69; Linstrom P. J., Mallard W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 2005.Google Scholar

  • 13. Ranz, W.E.; Marshall, W.R. Evaporation from drops, Chemical Engineering Progress, vol. 48, pp. 141-146, 1952.Google Scholar

  • 14. Kuiken, K. (2008): Diesel engines for ship propulsion and power plants from 0 to 100000 kW. 1st Edition. The Netherlands: Target Global Energy Training.Google Scholar

  • 15. Woodyard, D. Pounder’s marine diesel engines and gas turbines. 9th Edition. Oxford. Elsevier, 2009.Google Scholar

  • 16. Lamas, M.I.; Rodríguez, C.G. CFD analysis of the scavenging process in the MAN B&W 7S50MC two-stroke diesel marine engine. Journal of Ship Research, vol. 56(3), pp. 154–161, 2012.CrossrefGoogle Scholar

  • 17. Lamas, M.I.; Rodríguez, C.G.; Rebollido, J.M. Numerical model to study the valve overlap period in the Wärtsilä 6L46 four-stroke marine engine. Polish Maritime Research, vol.18, pp. 31-37, 2012.Web of ScienceGoogle Scholar

  • 18. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Numerical analysis of several port configurations in the Fairbanks-Morse 38D8-1/8 opposed piston marine engine. Brodogradnja, vol. 66, no. 1, pp. 1-11, 2015.Google Scholar

  • 19. Lamas, M.I.; Rodríguez, C.G. Numerical model to study the combustion process and emissions in the Wärtsilä 6L 46 four-stroke marine engine. Polish Maritime Research, vol. 20, pp. 61-66, 2013.Web of ScienceGoogle Scholar

  • 20. Lamas, M.I.; Rodríguez, C.G.; Aas, H.P. Computational fluid dynamics analysis of NOx and other pollutants in the MAN B&W 7S50MC marine engine and effect of EGR and water addition. International Journal of Maritime Engineering, vol. 155, Part A2, pp. A81-A88, 2013.Google Scholar

  • 21. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach. Journal of Naval Architecture and Marine Engineering, vol. 5(4), pp. 493-501, 2013.Web of ScienceGoogle Scholar

  • 22. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Computational fluid dynamics of NOx reduction by ammonia injection in the MAN B&W 7S50MC marine engine. International Journal of Maritime Engineering, vol. 156, Part A3, pp. A213-A220, 2014.Web of ScienceGoogle Scholar

About the article

Published Online: 2016-06-30

Published in Print: 2016-04-01

Citation Information: Polish Maritime Research, Volume 23, Issue 2, Pages 42–47, ISSN (Online) 2083-7429, DOI: https://doi.org/10.1515/pomr-2016-0019.

Export Citation

© 2016 M. I. Lamas et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in