Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Maritime Research

The Journal of Gdansk University of Technology

4 Issues per year


IMPACT FACTOR 2016: 0.776

CiteScore 2016: 0.98

SCImago Journal Rank (SJR) 2015: 0.317
Source Normalized Impact per Paper (SNIP) 2015: 1.050

Open Access
Online
ISSN
2083-7429
See all formats and pricing
More options …
Volume 24, Issue s3

Issues

Low Cost Integrated Navigation System for Unmanned Vessel

Changsong Yang
  • Corresponding author
  • School of Information & Control, Nanjing University of Information Science & Technology, Nanjing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qi Wang
  • School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-22 | DOI: https://doi.org/10.1515/pomr-2017-0112

Abstract

Large errors of low-cost MEMS inertial measurement unit (MIMU) lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS). This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

Keywords: Low cost; MEMS; Inertial navigation; Integrated navigation

References

  • 1. J. M. Daly, M. J. Tribou and S. L. Waslander, 2012. A nonlinear path following controller for an underactuated unmanned surface vessel. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura. pp. 82-87.Google Scholar

  • 2. M. H. Ghani, L. R. Hole, Ilker Fer, etal., 2014. The SailBuoy remotely-controlled unmanned vessel: Measurements of near surface temperature, salinity and oxygen concentration in the Northern Gulf of Mexico. Methods in Oceanography, (10), 104-121.Google Scholar

  • 3. P. W. Pritchett, 2015. Ghost Vessels: Why the Law Should Embrace Unmanned Vessel Technology. Tulane Maritime Law Journal, 40(1), 197.Google Scholar

  • 4. Y. Man, M. Lundh, T. Porathe, etal., 2015. From desk to field - Human factor issues in remote monitoring and controlling of autonomous unmanned vessels. Procedia Manufacturing, (3), 2674-2681.Google Scholar

  • 5. J. M. Larrazabal, M. S. Penas, 2016. Intelligent rudder control of an unmanned surface vessel. Expert Systems with Applications, (55), 106-117.CrossrefGoogle Scholar

  • 6. L. Zhang, Z. Xiong, J. Lai, etal., 2016. Optical flowaided navigation for UAV: A novel information fusion of integrated MEMS navigation system. Optik, (127), 447-451.Google Scholar

  • 7. M. Morgado, P. Oliveira, and C. Silvestre, 2010. Design and experimental evaluation of an integrated USBL/INS system for AUVs. In: IEEE International Conference on Robotics and Automation, Alaska, pp.4264-4269.Google Scholar

  • 8. Y. Geng, R. Martins, J. Sousa, 2010. Accuracy Analysis of DVL/IMU/Magnetometer Integrated Navigation System using Different IMUs in AUV. In: IEEE International Conference on Control and Automation, Xiamen, pp. 516-521.Google Scholar

  • 9. C. Eling, L. Klingbeil and H. Kuhlmann, 2015. Real- Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs. Sensors, (15): 26212-26235.Web of ScienceGoogle Scholar

  • 10. Y. Qin, 2006. Inertial navigation. Science Press, Beijing, 355-361. Google Scholar

  • 11. M. S. Grewal, A. P. Andrews, and C. G. Bartone, 2013. Global navigation satellite systems, inertial navigation, and integration, Third edition. John Wiley & Sons, Inc., Hoboken, New Jersey.Google Scholar

  • 12. V. Awale, H. B. Hablani, 2015. Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation. Defence Science Journal, 65(6), 425-430.Google Scholar

About the article

Published Online: 2017-11-22

Published in Print: 2017-11-27


Citation Information: Polish Maritime Research, Volume 24, Issue s3, Pages 110–115, ISSN (Online) 2083-7429, DOI: https://doi.org/10.1515/pomr-2017-0112.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in