Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings on Privacy Enhancing Technologies

4 Issues per year

Open Access
See all formats and pricing
More options …

Are you The One to Share? Secret Transfer with Access Structure

Yongjun Zhao / Sherman S.M. Chow
Published Online: 2016-12-22 | DOI: https://doi.org/10.1515/popets-2017-0010


Sharing information to others is common nowadays, but the question is with whom to share. To address this problem, we propose the notion of secret transfer with access structure (STAS). STAS is a twoparty computation protocol that enables the server to transfer a secret to a client who satisfies the prescribed access structure. In this paper, we focus on threshold secret transfer (TST), which is STAS for threshold policy and can be made more expressive by using linear secret sharing. TST enables a number of applications including a simple construction of oblivious transfer (OT) with threshold access control, and (a variant of) threshold private set intersection (t-PSI), which are the first of their kinds in the literature to the best of our knowledge. The underlying primitive of STAS is a variant of OT, which we call OT for a sparse array. We provide two constructions which are inspired by state-of-the-art PSI techniques including oblivious polynomial evaluation (OPE) and garbled Bloom filter (GBF). The OPEbased construction is secure in the malicious model, while the GBF-based one is more efficient. We implemented the latter one and showed its performance in applications such as privacy-preserving matchmaking.

Keywords: oblivious transfer; access structure; private set-intersection; oblivious polynomial evaluation


  • [1] A. Abadi, S. Terzis, and C. Dong. O-PSI: delegated private set intersection on outsourced datasets. In IFIP SEC, 2015.Google Scholar

  • [2] R. Agrawal, A. V. Evfimievski, and R. Srikant. Information sharing across private databases. In ACM SIGMOD, 2003.Google Scholar

  • [3] G. Ateniese, E. D. Cristofaro, and G. Tsudik. (if) size matters: Size-hiding private set intersection. In PKC, 2011.Google Scholar

  • [4] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, Israel, 1996.Google Scholar

  • [5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7):422-426, 1970.CrossrefGoogle Scholar

  • [6] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. H. M. Smid, and Y. Tang. On the false-positive rate of Bloom filters. Inf. Process. Lett., 108(4):210-213, 2008.Google Scholar

  • [7] E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh.Openconflict: Preventing real time map hacks in online games. In IEEE Symp. on Security and Privacy, S&P, 2011.Google Scholar

  • [8] J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious transfer with access control. In ACM CCS, 2009.Google Scholar

  • [9] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In CRYPTO, 2003.Google Scholar

  • [10] J. Camenisch and G. M. Zaverucha. Private intersection of certified sets. In FC, 2009.Google Scholar

  • [11] E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols secure in malicious model. In ASIACRYPT, 2010.Google Scholar

  • [12] E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In FC, 2010.Google Scholar

  • [13] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung.Efficient robust private set intersection. In ACNS, 2009.Google Scholar

  • [14] P. D’Arco, M. I. G. Vasco, A. L. P. del Pozo, and C. Soriente.Size-hiding in private set intersection: Existential results and constructions. In AFRICACRYPT, 2012.Google Scholar

  • [15] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO, 1989.Google Scholar

  • [16] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In PKC, 2005.Google Scholar

  • [17] C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an efficient and scalable protocol. In ACM CCS, 2013.Google Scholar

  • [18] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom functions. In TCC, 2005.Google Scholar

  • [19] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In EUROCRYPT, 2004.Google Scholar

  • [20] O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.Google Scholar

  • [21] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. In STOC, 1985.Google Scholar

  • [22] C. Hazay. Oblivious polynomial evaluation and secure setintersection from algebraic PRFs. In TCC Part-II, 2015.Google Scholar

  • [23] C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In TCC, 2008.Google Scholar

  • [24] C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In PKC, 2010.Google Scholar

  • [25] R. Henry, F. G. Olumofin, and I. Goldberg. Practical PIR for electronic commerce. In ACM CCS, 2011.Google Scholar

  • [26] S. Hohenberger and S. A. Weis. Honest-verifier private disjointness testing without random oracles. In PET, 2006.Google Scholar

  • [27] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than custom protocols? In NDSS, 2012.Google Scholar

  • [28] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive OT and secure computation of set intersection. In TCC, 2009.Google Scholar

  • [29] A. Juels and M. Sudan. A fuzzy vault scheme. Des. Codes Cryptography, 38(2):237-257, 2006.Google Scholar

  • [30] F. Kerschbaum. Outsourced private set intersection using homomorphic encryption. In ASIACCS, 2012.Google Scholar

  • [31] L. Kissner and D. X. Song. Privacy-preserving set operations. In CRYPTO, 2005.Google Scholar

  • [32] I. Komargodski and M. Zhandry. Cutting-edge cryptography through the lens of secret sharing. In TCC Part II, 2016.Google Scholar

  • [33] J. Lai, R. H. Deng, and Y. Li. Expressive CP-ABE with partially hidden access structures. In ASIACCS, 2012.Google Scholar

  • [34] A. B. Lewko and B. Waters. Decentralizing attribute-based encryption. In EUROCRYPT, 2011.Google Scholar

  • [35] P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange. J. Cryptology, 19(1):27-66, 2006.Web of ScienceGoogle Scholar

  • [36] M. Nabeel, N. Shang, and E. Bertino. Efficient privacy preserving content based publish subscribe systems. In SACMAT, 2012.Google Scholar

  • [37] S. Nagaraja, P. Mittal, C. Hong, M. Caesar, and N. Borisov. BotGrep: Finding P2P bots with structured graph analysis. In USENIX Security, 2010.Google Scholar

  • [38] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Location privacy via private proximity testing. In NDSS, 2011.Google Scholar

  • [39] T. Nishide, K. Yoneyama, and K. Ohta. Attribute-based encryption with partially hidden encryptor-specified access structures. In ACNS, 2008.Google Scholar

  • [40] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, 1999.Google Scholar

  • [41] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection using permutation-based hashing. In USENIX Security, 2015.Google Scholar

  • [42] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT extension. In USENIX Security, 2014.Google Scholar

  • [43] M. D. Raimondo and R. Gennaro. Provably secure threshold password-authenticated key exchange. J. Comput. Syst. Sci., 72(6):978-1001, 2006.CrossrefGoogle Scholar

  • [44] A. Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.CrossrefGoogle Scholar

  • [45] V. Shoup. Practical threshold signatures. In EUROCRYPT, 2000.Google Scholar

  • [46] Q. Ye, R. Steinfeld, J. Pieprzyk, and H. Wang. Efficient fuzzy matching and intersection on private datasets. In ICISC, 2009.Google Scholar

  • [47] T. H. Yuen, W. Susilo, and Y. Mu. Towards a cryptographic treatment of publish/subscribe systems. Journal of Computer Security, 22(1):33-67, 2014.Google Scholar

  • [48] Y. Zhao and S. S. M. Chow. Are you the one to share? Secret transfer with access structure. IACR ePrint, 2015/929. Google Scholar

About the article

Received: 2016-05-31

Revised: 2016-09-01

Accepted: 2016-09-02

Published Online: 2016-12-22

Published in Print: 2017-01-01

Citation Information: Proceedings on Privacy Enhancing Technologies, Volume 2017, Issue 1, Pages 149–169, ISSN (Online) 2299-0984, DOI: https://doi.org/10.1515/popets-2017-0010.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in