Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …

Authigenic pyrite framboids in sedimentary facies of the Mount Wawel Formation (Eocene), King George Island, West Antarctica

Anna Mozer
  • Instytut Nauk Geologicznych PAN, Ośrodek Badawczy w Warszawie, Twarda 51/55, 00-818 Warszawa, Poland; Zakład Biologii Antarktyki PAN, Ustrzycka 10/12, 02-141 Warszawa, Poland
Published Online: 2010-09-03 | DOI: https://doi.org/10.2478/v10183-010-0004-2

Authigenic pyrite framboids in sedimentary facies of the Mount Wawel Formation (Eocene), King George Island, West Antarctica

Pyrite framboids occur in loose blocks of plant-bearing clastic rocks related to volcano-sedimentary succession of the Mount Wawel Formation (Eocene) in the Dragon and Wanda glaciers area at Admiralty Bay, King George Island, West Antarctica. They were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and isotopic analysis of pyritic sulphur. The results suggest that the pyrite formed as a result of production of hydrogen sulphide by sulphate reducing bacteria in near surface sedimentary environments. Strongly negative Δ34SVCDT values of pyrite (-30 - -25 ‰) support its bacterial origin. Perfect shapes of framboids resulted from their growth in the open pore space of clastic sediments. The abundance of framboids at certain sedimentary levels and the lack or negligible content of euhedral pyrite suggest pulses of high supersaturation with respect to iron monosulphides. The dominance of framboids of small sizes (8-16 μm) and their homogeneous distribution at these levels point to recurrent development of a laterally continuous anoxic sulphidic zone below the sediment surface. Sedimentary environments of the Mount Wawel Formation developed on islands of the young magmatic arc in the northern Antarctic Peninsula region. They embraced stagnant and flowing water masses and swamps located in valleys, depressions, and coastal areas that were covered by dense vegetation. Extensive deposition and diagenesis of plant detritus in these environments promoted anoxic conditions in the sediments, and a supply of marine and/or volcanogenic sulphate enabled its bacterial reduction, precipitation of iron monosulphides, and their transformation to pyrite framboids.

Keywords: Antarctica; King George Island; Eocene; framboidal pyrite; bacterial sulphate reduction; sulphur isotopes

  • Ayora C., Taberner C., Pierre C. and Pueyo J. J. 1995. Modeling the sulfur and oxygen isotopic composition of sulfates through a halite-potash sequence: Implications for the hydrological evolution of the Upper Eocene Southpyrenean basin. Geochimica et Cosmochimica Acta 59: 1799-1808.CrossrefGoogle Scholar

  • Bates A. L., Spiker E. C., Orem W. H. and Burnett W. C. 1993. Speciation and isotopic composition of sulfur in sediments from Jellyfish Lake, Palau. Chemical Geology 106: 63-76.CrossrefGoogle Scholar

  • Berner R. A. 1970. Sedimentary pyrite formation. American Journal of Science 268: 1-23.Google Scholar

  • Berner R. A. 1974. Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sediments. In: E. D. Goldberg (ed.) The Sea 5, Wiley, New York: 427-450.Google Scholar

  • Berner R. A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta 48: 605-615.CrossrefGoogle Scholar

  • Berner R. A. 1985. Sulphate reduction, organic matter decomposition and pyrite formation. Philosophy Transactions Royal Society of London A 315: 25-38.Google Scholar

  • Billon G., Thoumelin G., Barthe J. F. and Fisher J. C. 2007. Variations of fatty acids during the sulphidization process in the Authie Bay sediments. Soil Sediments 7: 17-24.Google Scholar

  • Birkenmajer K. 1980. Tertiary volcanic-sedimentary succession at Admiralty Bay, King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica 64: 8-65.Google Scholar

  • Birkenmajer K. 1981. Lithostratigraphy of the Point Hennequin Group (Miocene volcanics and sediments) at King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica 72: 59-73.Google Scholar

  • Birkenmajer K. 1983. Late Cenozoic phases of block-faulting on King George Island (South Shetland Islands, Antarctica). Bulletin, Académie Polonaise des Sciences: Terre, 30: 21-32.Google Scholar

  • Birkenmajer K. 1989. A guide to Tertiary geochronology of King George Island, West Antarctica. Polish Polar Research 10: 555-579.Google Scholar

  • Birkenmajer K. 2001. Mesozoic and Cenozoic stratigraphic units in parts of the South Shetland Islands and Northern Antarctic Peninsula (as used by the Polish Antarctic Programmes). Studia Geologica Polonica 118: 5-188.Google Scholar

  • Birkenmajer K. 2003. Admiralty Bay, King George Island (South Shetland Islands, West Antarctica): A geological monograph. Studia Geologica Polonica 120: 5-73.Google Scholar

  • Birkenmajer K. and Zastawniak E. 1989. Late Cretaceous-early Tertiary floras of King George Island, West Antarctica: their stratigraphic distribution and paleoclimatic significance. In: J. A. Crame (ed.) Origins and Evolution of the Antarctic Biota. Geological Society Special Publications 47: 227-240.CrossrefGoogle Scholar

  • Birkenmajer K., Francalanci L. and Peccerillo A. 1991. Petrological and geochemical constraints on the genesis of Mesozoic-Cenozoic magmatism of King George Island, South Shetland Islands, Antarctica. Antarctic Science 3: 293-308.Google Scholar

  • Bond D. P. G. and Wignall P. B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122: 1265-1279.CrossrefGoogle Scholar

  • Butler I. B., Böttcher M. E., Rickard D. and Oldroyd A. 2004. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth and Planetary Science Letters 228: 495-509.Google Scholar

  • Canfield D. E. 1989. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta 53: 619-632.CrossrefPubMedGoogle Scholar

  • Canfield D. E., Olesen C. A. and Cox R. P. 2006. Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta 70: 548-561.CrossrefGoogle Scholar

  • Canfield D. E., Raiswell R., Westrich J. T., Reaves C. M. and Berner R. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology 54: 149-155.CrossrefGoogle Scholar

  • Chambers L. A. and Trudinger P. A. 1979. Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiology Journal 1: 249-293.Google Scholar

  • Goldhaber M. B. and Kaplan I. R. 1974. The sulfur cycle. In: E. D. Goldberg (ed.) The Sea 5, Wiley, New York: 569-655.Google Scholar

  • Gorjan P., Walter M. R. and Swart R. 2003. Global Neoproterozoic (Sturtian) post-glacial sulfide-sulfur isotope anomaly recognized in Namibia. Journal of African Earth Sciences 36: 89-98.CrossrefGoogle Scholar

  • Habicht K. S. and Canfield D. E. 1997. Sulphur isotope fractionation during bacterial sulphate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta 61: 5351-5361.Google Scholar

  • Hunt R. J. and Poole I. 2003. Paleogene West Antarcic climate and vegetation history in light of new data from King George Island. In: S. L. Wing P. D. Gingerich B. Schmitz and E. Thomas (eds) Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369: 395-412.Google Scholar

  • Jones B. and Manning D. A. C. 1994. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology 111: 111-129.Google Scholar

  • Kaplan I. R. and Rittenberg S. C. 1963. Microbiological fractionation of sulphur isotopes Journal of General Microbiology 34: 195-212.Google Scholar

  • Kolthoff I. M. and Sandell E. B. 1952. Textbook of quantitative inorganic analysis. MacMillan Company, New York: 759 pp.Google Scholar

  • Krajewski K. P., Van Cappelen P., Trichet J., Kuhn O., Lucas J., Martín-Algarra A., Prévôt L., Tewari V. C., Gaspar L., Knight R. I. and Lamboy M. 1994. Biological processes and apatite formation in sedimentary environments. Eclogae Geologicae Helvetiae 87: 701-745.Google Scholar

  • Li H. 1994. Some Late Cretaceous plants from King George Island, Antarctica. In: Y. Shen (ed.) Stratigraphy and Palaeontology of Fildes Peninsula, King George Island, Antarctica. State Antarctic Committee, Monograph 3: 85-96. Science Press, Beijing.Google Scholar

  • Lyons T. W., Werne J. P., Hollander D. J. and Murray R. W. 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology 195: 131-157.Google Scholar

  • Machel H. G. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings - old and insights. Sedimentary Geology 140: 143-175.Google Scholar

  • Mangalo M., Meckenstock R. U., Stichler W. and Einsiedl F. 2007. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochimica et Cosmochimica Acta 71: 4161-4171.CrossrefGoogle Scholar

  • Marini L., Gambardella B., Principe C., Arias A., Brombach T. and Hunzicker J. C. 2002. Characterization of magmatic sulfur in the Aegean island arc by means of the δ34S values of fumarolic H2S, elemental S, and hydrothermal gypsum from Nisyros and Milos islands. Earth and Planetary Science Letters 200: 15-31.Google Scholar

  • Marynowski L., Rakociński M. and Zatoń M. 2007. Middle Famennian (Late Devonian) interval with pyritized fauna from the Holy Cross Mountains (Poland): Organic geochemistry and pyrite framboid diameter study. Geochemical Journal 41: 187-200.CrossrefGoogle Scholar

  • Mazot A., Bernard A. and Sutawidjaja I. S. 2007. Hydrothermal system of the Papandayan Volcano, West Java, Indonesia and its geochemistry evolution of thermal water after the November 2002 eruption. Journal Geologi Indonesia 2 (1): 15-29.Google Scholar

  • Middelburg J. J. 1991. Organic carbon, sulphur and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochimica et Cosmochimica Acta 55: 815-828.CrossrefGoogle Scholar

  • Morse J. W., Millero F. J., Cornwell J. C. and Rickard D. 1987. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sciences Review 24: 1-42.CrossrefGoogle Scholar

  • Ohfuji H. and Rickard D. 2005. Experimental syntheses of framboids - a review. Earth Sciences Review 71: 147-170.CrossrefGoogle Scholar

  • Pankhurst R. J. and Smellie J. L. 1983. K-Ar geochronology of the South Shetland Islands, Lesser Antarctica: apparent lateral migration of Jurassic to Quaternary island arc volcanism. Earth and Planetary Science Letters 66: 214-222.CrossrefGoogle Scholar

  • Poole I., Hunt R. J. and Cantrill D. J. 2001. A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene vegetation. Annals of Botany 88: 33-54.CrossrefGoogle Scholar

  • Raiswell R., Buckley F., Berner R. A., and Anderson T. F. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Research 58: 812-819.Google Scholar

  • Rickard D., Grimes S., Butler I., Oldroyd A. and Davies K. L. 2007. Botanical constraints on pyrite formation. Chemical Geology 236: 228-246.Google Scholar

  • Roberts A. P. and Turner G. M. 1993. Diagenetic formation of ferromagnetic iron sulphide minerals in rapidly deposited marine sediments. South Island, New Zealand. Earth and Planetary Science Letters 115: 257-273.Google Scholar

  • Smellie J. L., Pankhurst R. J., Thomson M. R. A. and Davies R. E. S. 1984. The geology of the South Shetland Islands. VI. Stratigraphy, geochemistry and evolution. British Antarctic Survey, Scientific Reports 87: 1-85Google Scholar

  • Sweeney R. E. and Kaplan I. R. 1973. Pyrite framboid formation: laboratory synthesis and marine sediments. Economic Geology 68: 618-634.Google Scholar

  • Tatur A., Krajewski K. P., Angiel P., Bylina P., Delura K., Mozer A., Nawrocki J., Pańczyk M., Pecskay Z. and Zieliński G. 2009. Lithostratigraphy, dating and correlation of Cenozoic glacial and interglacial sequences on King George Island, West Antarctica. First Antarctic Climate Evolution Symposium, 7-11/09/2009, Granada, Spain. Abstract No. 3534.Google Scholar

  • Taylor G. K. and Macquaker J. H. S. 2000. Early diagenetic pyrite morphology in a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, eastern England. Sedimentary Geology 131: 77-86.Google Scholar

  • Thode H. G. 1991. Sulphur isotopes in nature and the environment: An overview. In: H. R. Krouse and V. A. Grinenko (eds) Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. SCOPE 43. J. Wiley & Sons, Chichester: 1-26.Google Scholar

  • Torssander P. 1992. Sulfur isotope ratios of leg 126 igneous rock. Proceedings of the Ocean Drilling Program, Scientific Results 126: 449-453.Google Scholar

  • Tuttle M. L., Goldhaber M. B. and Williamson D. L. 1986. An analytical scheme for determining forms of sulphur in oil shales and associated rocks. Talanta 33: 953-961.PubMedCrossrefGoogle Scholar

  • Uchman A., Gaździcki A. and Błażejowski B. 2008. Caddisfly (Trichoptera) cases from the Oligocene lacustrine strata of King George Island, West Antarctica. SCAR/IASC IPY, Open Science Conference. St. Petersburg, Russia, July 8th-11th 2008. Abstract volume: 289-290.Google Scholar

  • Wang Q. and Morse J. W. 1996. Pyrite formation under conditions approximating those in anoxic sediments I. Pathways and morphology. Marine Chemistry 52: 99-121.Google Scholar

  • Wignall P. B. and Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science 298: 537-552.Google Scholar

  • Wignall P. B., Bond D. P. G., Kuwahara K., Kakuwa Y., Newton R. J. and Poulton S. W. 2010. An 80 milion year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change 71: 109-123.CrossrefGoogle Scholar

  • Wilkin R. T. and Barnes H. L. 1997a. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta 61: 323-338.Google Scholar

  • Wilkin R. T. and Barnes H. L. 1997b. Pyrite formation in an anoxic estuarine basin. American Journal of Science 297: 620-650.Google Scholar

  • Wilkin R. T., Barnes H. L. and Brantley S. R. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta 60: 3897-3912.CrossrefGoogle Scholar

  • Zastawniak E. 1981. Tertiary leaf flora from the Point Hennequin Group of King George Island (South Shetland Islands, Antarctica). Preliminary report. Studia Geologica Polonica 72: 97-108.Google Scholar

  • Zastawniak E. 1998. Plant vegetation in the Late Cretaceous and Tertiary of West Antarctica. In: A. Gaździcki A. and K. Jażdzewski (eds) Polar Ecosystems. Kosmos 47 (4): 409-416 [in Polish, English summary].Google Scholar

  • Zastawniak E., Wrona R., Gaździcki A. and Birkenmajer K. 1985. Plant remains from the top part of the Point Hennequin Group (Upper Oligocene), King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica 81: 143-164.Google Scholar

  • Zhou Z. and Li H. 1994. Early Tertiary ferns from Fildes Peninsula, King George Island, Antarctica. In: Y. Shen (ed.) Stratigraphy and Palaeontology of Fildes Penninsula, King George Island, Antarctica. State Antarctic Committee, Monograph 3: 173-189. Science Press, Beijing.Google Scholar

About the article


Published Online: 2010-09-03

Published in Print: 2010-01-01


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/v10183-010-0004-2.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in