Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …

Genetic and epigenetic studies on populations of Deschampsia antarctica Desv. from contrasting environments on King George Island

Katarzyna Chwedorzewska
  • Zakļad Biologii Antarktyki, Polska Akademia Nauk, Warszawa, ul. Ustrzycka 10/12, 02-141, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Bednarek
Published Online: 2011-03-10 | DOI: https://doi.org/10.2478/v10183-011-0005-9

Genetic and epigenetic studies on populations of Deschampsia antarctica Desv. from contrasting environments on King George Island

Populations of Antarctic hairgrass Deschampsia antarctica Desv. from King George Island exhibit variation in many traits. The reason for that is not evident and could be addressed to variable environmental conditions. Obviously, phenotypic variation could be due to stable or temporal changes in expression pattern as the result of adaptation. Stable changes could be due to mutations or site DNA methylation variation that modified expression pattern. Recently, MetAFLP approach was proposed to study such effects. A variant of methylation sensitive AFLP (Amplified Fragment Length Polymorphism), based on the isoschizomeric combinations Acc65I/MseI and KpnI/MseI was applied to analyze the sequence and site DNA methylation differences between two D. antarctica populations exhibiting morphological dissimilarities. Both DNA sequence mutations and site methylation pattern alternations were detected among and within analyzed populations. It is assumed that such changes might have originated as the response to environmental conditions that induced site methylation alternations leading to phenotypic variation of D. antarctica populations from South Shetland Islands.

Keywords: Antarctic; South Shetland Islands; Deschampsia antarctica; genetic/methylation diversity

  • Alberdi M., Bravo L. A., Gutierrez A., Gidekel M. and Corcuera L. J. 2001. Ecophysiology of Antarctic vascular plants. Physiologia Plantarum 115: 479-486.Google Scholar

  • Bednarek P. T., Masojc P., Lewandowska R. and Mysków B. 2003. Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. Journal of Applied Genetics 44: 21-33.PubMedGoogle Scholar

  • Bednarek P. T., Orļowska R., Koebner R. M. D. and Zimny J. 2007. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biology. http://www.biomedcentral.com/1471-2229/7/10 http://www.biomedcentral.com/1471-2229/7/10

  • Bruce T. A., Matthes M. C., Napier J. A. and Pickett J. A. 2007. Stressful "memories" of plants: evidence and possible mechanisms. Plant Science 173: 603-608.Web of ScienceGoogle Scholar

  • Cassells A. C. and Curry R. F. 2000. Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture. Implications for micropropagators and genetic engineers. Plant Cell Tissue and Organ Culture 64: 145-157.Google Scholar

  • Chinnusamy V. and Zhu J. K. 2009. Epigenetic regulation of stress response in plants. Current Opinion in Plant Biology 12: 133-139.CrossrefGoogle Scholar

  • Chwedorzewska K. J. 2008. Poa annua L. in Antarctic - searching for the source of introduction. Polar Biology 31: 263-268.CrossrefWeb of ScienceGoogle Scholar

  • Chwedorzewska K. J. and Bednarek P. T. 2008. Genetic variability in the Antarctic hairgrass Deschampsia antarctica Desv. from maritime Antarctic and sub-Antarctic sites. Polish Journal of Ecology 56: 209-216.Google Scholar

  • Chwedorzewska K. J., Bednarek P. T. and Puchalski J. 2004. Molecular and morphological variation of Antarctic grass Deschampsia antarctica Desv. from King George Island (Antarctica). Acta Societatis Botanicorum Poloniae 73: 23-29.CrossrefGoogle Scholar

  • Chwedorzewska K. J., Gieļwanowska I., Szczuka E. and Bochenek A. 2008. Anatomical and genetic variation of Deschampsia antarctica Desv. from King George Island (the Antarctic). Polish Polar Research 4: 377-386.Google Scholar

  • Corner R. W. M. 1971. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv.: IV. Distribution and reproductive performance in Argentine islands. British Antarctic Survey Bulletin 26: 41-50.Google Scholar

  • Cubas P., Vincent C. and Coen E. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157-161.Google Scholar

  • Duchesne P. and Bernatchez L. 2002. AFLPOP: A computer program for simulated and real population allocation based on AFLP data. Molecular Ecology Notes 3: 380-383.CrossrefGoogle Scholar

  • Finnegan E. J. 2001. Epialleles - a source of random variation in times of stress. Current Opinion in Plant Biology 5: 101-106.Google Scholar

  • Fowbert J. A. and Smith R. I. L. 1994. Rapid population increase in native vascular plants in the Argentine Is, Antarctic Peninsula. Arctic, Antarctic and Alpine Research 26: 290-296.Google Scholar

  • Frenot Y., Chown S. L., Whinam J., Selkirk P. M., Convey P., Skotnicki M. and Bergstrom D. M. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews 80: 45-72.CrossrefGoogle Scholar

  • Gieļwanowska I. 2003a. Responses of Deschampsia antarctica to abiotic stress factors. Polish Journal of Natural Science 1: 108-111.Google Scholar

  • Gieļwanowska I. 2003b. Ultrastructural investigations of Deschampsia antarctica mesophyll. In: M. Olech (ed.) The Functioning of Polar Ecosystems as Viewed Against Global Environmental Changes. XXXIX International Polar Symposium, Kraków: 47-49.Google Scholar

  • Grant-Downton R. T. and Dickinson H. G. 2005. Epigenetics and its implication for plant biology 1. The epigenetic network in plants. Annals of Botany 96: 188-195.Google Scholar

  • Grant-Downton R. T. and Dickinson H. G. 2006. Epigenetics and its implication for plant biology 2. The Epigenetic epiphany: Epigenetics, evolution and beyond. Annals of Botany 97: 11-27.Google Scholar

  • Halliburton R. 2004. Introduction to Population Genetics. Pearson Education Int., Upper Saddle River, New Jersey: 650 pp.Google Scholar

  • Hammer Ø., Harper D. A. T. and Ryan P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 9. http://palaeoelectronica.org/2001_1/past/issue1_01.htm 2001 http://palaeoelectronica.org/2001_1/past/issue1_01.htm

  • Heschel M. S., Sultan S. E., Glover S. and Sloan D. 2004. Population differentiation and plastic response to drought stress in the generalist annual Polygonum persicaria.International Journal of Plant Science 165: 817-824.CrossrefGoogle Scholar

  • Holderegger R., Stehlik I., Lewis-Smith R. I. and Abbott R. J. 2003. Population of Antarctic hairgrass (Deschampsia antarctica) show low genetic diversity. Arctic, Antarctic and Alpine Research 35: 214-217.CrossrefGoogle Scholar

  • Kaeppler S. M., Kaeppler H. F. and Rhee Y. 2000. Epigenetic aspects of somaclonal variation in plants. Plant Molecular Biology 43: 179-188.CrossrefPubMedGoogle Scholar

  • Kappen L. 2000. Some aspects of the great success of lichens in the Antarctica. Antarctic Science 12: 314-324.Google Scholar

  • Kovařik A., Koukalová B., Bezděk M. and Opatrný Z. 1997. Hypermethylation of tobacco heterochromatic loci response to osmotic stress. Theoretical and Applied Genetics 95: 301-306.Google Scholar

  • Labra M., Ghiani A., Citterio S., Sgorbati S., Sala F., Vannini C., Ruffini-Castigilione M. and Baracale M. 2002. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biology 4: 694-699.CrossrefGoogle Scholar

  • Lukens L. and Zhan S. 2007. The plant genome's methylation status and response to stress: implications for plant improvement. Current Opinion in Plant Biology 10: 317-322.CrossrefWeb of ScienceGoogle Scholar

  • Madlung A. and Comai L. 2004. The effect of stress on genome regulation and structure. Annals of Botany 94: 481-495.CrossrefPubMedGoogle Scholar

  • Nędzarek A. and Chwedorzewska K. J. 2004. Nutrients content in water flash chosen sites of Deschampsia antarctica (King George Island, Antarctica). Folia Universitatis Agriculture Stetinensis 234: 299-304.Google Scholar

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.PubMedGoogle Scholar

  • Oleszczuk S., Zimny J. and Bednarek P. T. 2002. The application of the AFLP method to determine homozygous lines purity of barley (Hordeum vulgare L.). Cellular and Molecular Biology Letters 7: 777-784.Google Scholar

  • Peakall R. and Smouse P. E. 2001. GenALEx V5: Genetic Analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra. www.anu.edu.au/BoZo/GenALEx/

  • Pritchard J. K. and Wen W. 2003. Documentation for structure software: Version 2. Department of Human Genetics, University of Chicago, Chicago, IL. http://pritchbsduchicagoedu/software/readme_2_1/readmehtml http://pritchbsduchicagoedu/software/readme_2_1/readmehtml

  • Rout G. R., Mohapatra A. and Mohan Jain S. 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology Advances 24: 531-560.CrossrefGoogle Scholar

  • Shannon C. E. and Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL: 117 pp.Google Scholar

  • Smith L. R. I. 2001. Plant colonisation response to climate change in the Antarctic. Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis Geographia 25: 19-33.Google Scholar

  • Smith L. R. I. 2003. The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctic. In: A. H. L. Huiskes, W. W. C. Gieskes, J. Rozema, R. M. L. Schorno, S. M. van der Vies and W. J. Wolff (eds) Antarctic Survey in a Global Context. Backhuys, Leiden: 234-239.Google Scholar

  • Stewards N., Ito M., Yamaguchi Y., Koizumi N. and Sano H. 2002. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry 277: 37741-37746.Google Scholar

  • Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zauber M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.CrossrefGoogle Scholar

  • Wahl S., Ryser P. and Edwards P. J. 2001. Phenotypic plasticity of grass anatomy in response to light intensity and nutrient supply. Annals of Botany 88: 1071-1078.CrossrefGoogle Scholar

  • van de Wouw M., van Dijk P. and Huiskes A. H. L. 2008. Regional genetic diversity in Antarctic hairgrass (Deschampsia antarctica Desv.). Journal of Biogeography 35: 365-376.Web of ScienceGoogle Scholar

About the article

Published Online: 2011-03-10

Published in Print: 2011-01-01

Citation Information: Polish Polar Research, Volume 32, Issue 1, Pages 15–26, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/v10183-011-0005-9.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dušan Gömöry, Matúš Hrivnák, Diana Krajmerová, and Roman Longauer
Central European Forestry Journal, 2017, Volume 63, Number 4
Piotr Androsiuk, Katarzyna Chwedorzewska, Kamil Szandar, and Irena Giełwanowska
Polish Polar Research, 2015, Volume 36, Number 3

Comments (0)

Please log in or register to comment.
Log in