Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 32, Issue 3 (Jan 2011)

Schmidt hammer tests across a recently deglacierized rocky coastal zone in Spitsbergen - is there a "coastal amplification" of rock weathering in polar climates?

Mateusz Strzelecki
  • Wydział Nauk Geograficznych i Geologicznych, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Dzięgielowa 27, 61-680 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-08-30 | DOI: https://doi.org/10.2478/v10183-011-0017-5

Schmidt hammer tests across a recently deglacierized rocky coastal zone in Spitsbergen - is there a "coastal amplification" of rock weathering in polar climates?

A significant limit to current understanding of cold coast evolution is the paucity of field observations regarding development of rocky coastlines and, in particular, lack of precise recognition of mechanisms controlling rock coast geomorphology in polar climates. Results are presented from a pilot survey of rock resistance using Schmidt Hammer Rock Tests (SHRT) across the recently deglacierized Nordenskioldbreen forefield and coastal zone, in central Spitsbergen, Svalbard. The aim is to improve understanding of the effects of rock weathering on high latitude coasts. SHRT across a field of roches moutonnées of meta-morphic rocks, uncovered from ice over the last century and exposed to the operation of littoral processes, demonstrated significant relationships between rock surface resistance and distance from present shoreline, distance from the ice cliff as well as thickness of the snow cover. Sites closest to the present-day shoreline were characterized by lower resistance in comparison with more inland locations. The result support models that advocate intensification of weathering processes in cold region coastal settings.

Keywords: Arctic; Svalbard; rocky coasts; SHRT; coastal evolution

  • André M.-F. 1997. Holocene rockwall retreat in Svalbard: a triple-rate evolution. Earth Surface and Processes and Landforms 22: 423-440.Google Scholar

  • Aoki H. and Matsukura Y. 2007. A new technique for non destructive field measurement of rock-surface strength: an application of the Equotip hardness tester to weathering studies. Earth Surface Processes and Landforms 32: 1759-1769.CrossrefGoogle Scholar

  • Aré F.E. 1988. Thermal abrasion of sea coasts. Polar Geography and Geology 12: 1-157.Google Scholar

  • Aré F., Reimnitz E., Grigoriev M., Hubberten H.-W. and Rachold V. 2008. The influence of cryogenic processes on the erosional Arctic shoreface. Journal of Coastal Research 24: 110-121.CrossrefGoogle Scholar

  • Ballantyne C.K., Black N.M. and Finlay D.P. 1989. Enhanced boulder weathering under late-lying snowpatches. Earth Surface Processes and Landforms 14: 745-750.CrossrefGoogle Scholar

  • Blanco-Chao R., Pérez-Alberti A., Trenhaile A.S., Costa-Casais M. and Valcárcel-Díaz M. 2007. Shore platform abrasion in a para-periglacial environment, Galicia, northwestern Spain. Geomorphology 83: 136-151.CrossrefGoogle Scholar

  • Byrne M.-L. and Dionne J.-C. 2002. Typical Aspects of Cold regions Shorelines. In: K. Hewitt, M.-L. Byrne, M. English and G. Young (eds) Landscapes in Transition. Landform Assemblages and Transformations in Cold Regions. Kluver Academic Publishers, Dordrecht: 141-158.Google Scholar

  • Chelli A., Pappalardo M., Llopis I.A. and Federici P.B. 2010. The relative influence of lithology and weathering in shaping shore platforms along the coastline of the Gulf of La Spezia (NW Italy) as revealed by rock strength. Geomorphology 118: 93-104.CrossrefGoogle Scholar

  • Cruslock E.M., Naylor L.A., Foote Y.L. and Swantesson J.O. 2010. Geomorphologic equifinality: A comparison between shore platforms in Höga Kusten and Fírö, Sweden and the Vale of Glamorgan, South Wales, UK. Geomorphology 114: 78-88.CrossrefGoogle Scholar

  • Dahl E. 1946. On the origin of the strandflat. Norsk Geografisk Tidsskrift 11: 159-172.Google Scholar

  • Dallmann W.K., Pipejohn K. and Blomeier D. 2004. Geological map of Billefjorden, Central Spitsbergen, Svalbardwith geological excursion guide 1:50 000. Norsk Polarinstitutt Tematkart 36.Google Scholar

  • Day M.J. and Goudie A.S. 1977. Field assessment of rock hardness using the Schmidt test hammer. British Geomorphology Research Group Technical Bulletin 18: 19-29.Google Scholar

  • Dickson M.E., Kennedy D.M. and Woodroffe C.D. 2004. The influence of rock resistance on coastal morphology around Lord Howe Island, Soutwest Pacific. Earth Surface Processes and Landforms 29: 629-643.CrossrefGoogle Scholar

  • Dionne J.-C. 1989. The role of ice and frost in tidal marsh development - a review with particular reference to Québec, Canada. In: E.C.F. Bird and D. Kelletat (eds) Zonality of coastal Geomorphology and Ecology. Essener Geographische Arbeiten 18: 171-210.Google Scholar

  • Dionne J.-C. and Brodeur D. 1988. Frost weathering and ice action in shore platform development, with particular reference to Quebec, Canada. Zeitschrift für Geomorphologie. Supplement Band 71: 117-30.Google Scholar

  • Evans D.J.A., Archer S. and Wilson D.J.H. 1999. A comparison of the lichenometric and Schmidt Hammer dating techniques based on data from the proglacial areas of some Icelandic glaciers. Quaternary Science Reviews 18: 13-41.CrossrefGoogle Scholar

  • Forbes D.L. (ed.). 2011. State of the Arctic Coast 2010 - Scientific Review and Outlook. International Arctic Science Committee, Land-Ocean Interactions in the Coastal Zone, Arctic Monitoring and Assessment Programme, International Permafrost Association. Helmholtz-Zentrum, Geesthacht, Germany: 178 pp. http://arcticcoasts.org http://arcticcoasts.org

  • Forman S., Lubinski D., Ingolfsson O., Zeeberg J., Snyder J., Siegert M. and Matishov G. 2004. A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews 23: 1391-1434.CrossrefGoogle Scholar

  • Goudie A. 2006. The Schmidt Hammer in geomorphological research. Progress in Physical Geography 30: 703-718.Google Scholar

  • Göktan R.M. and Ayday C. 1993. A suggested improvement to the Schimdt Rebound Hardness ISRM method with particular reference to rock machineability. International Journal of Rock Mechanics 30: 321-322.CrossrefGoogle Scholar

  • Guilcher A., Bodere J.-C., Coude A., Hansom J.D, Moign A. and Peulvast J.-P. 1986. The Strandflat problem in Five High Latitude Countries. In: D.J.A. Evans (ed.) Cold Climate Landforms. Wiley, Chichester: 351-393.Google Scholar

  • Hall K. 1993. Enhanced bedrock weathering in association with late-lying snowpatches - evidence from Livingston Island, Antarctica. Earth Surface Processes and Landforms 18: 121-29.CrossrefGoogle Scholar

  • Holtedahl H. 1998. The Norwegian strandflat - a geomorphic puzzle. Norsk Geologisk Tidsskrift 78: 47-66.Google Scholar

  • Humlum O., Instanes A. and Sollid J.L. 2003. Permafrost in Svalbard: a review of research history, climatic background and engineering challenges. Polar Research 22: 191-215.CrossrefGoogle Scholar

  • Jahn A. 1961. Quantitative analysis of some periglacial processes in Spitsbergen. Zeszyty Naukowe Uniwersytetu Wrocławskiego, Seria B, nr 5, Nauki o Ziemi II: 3-54.Google Scholar

  • Kennedy D.M., Paulik R. and Dickson M.E. 2010. Subaerial weathering versus wave processes in shore platform development: reappraising the Old Hat Island evidence. Earth Surface Processes and Landforms 36: 686-694.Google Scholar

  • Lantuit H., Overduin P.P., Couture N., Aré F., Atkinson D., Brown J., Cherkashov G., Drozdov D., Forbes D.L., Graves-Gaylord A., Grigoriev M., Hubberten H.-W., Jordan J., Jorgenson T., Ødegård R.S., Ogorodov S., Pollard W., Rachold V., Sedenko S., Solomon S., Steenhuisen F., Streletskaya I., Vasiliev A. and Wetterich S. 2011. The ACD coastal database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries and Coasts: doi:10.1007/s12237-010-9362-6.CrossrefGoogle Scholar

  • Lim M., Petley D.N., Rosser N.J., Allison R.J., Long A.J. and Pybus D. 2005. Combined digital photogrammetry and time-of-flight laser scanning for monitoring cliff evolution. The Photogrammetric Record 20: 109-129.CrossrefGoogle Scholar

  • Lim M., Rosser N.J., Allison R.J. and Petley D.N. 2010. Erosional processes in the hard rock coastal cliffs at Staithes, North Yorkshire. Geomorphology 114: 12-21.CrossrefGoogle Scholar

  • Małecki K. 2009. Zmiany zasięgów i geometrii lodowców otoczenia Petuniabukta (Ziemia Dicksona, Spitsbergen) w XX i XI wieku. (Changes in the extent and geometry of glaciers in Petuniabutka region (Dicksonland, Spitsbergen) in 20th and 21st century). Unpublished M. Sc. thesis (in Polish). Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań: 149 pp.Google Scholar

  • Matthews J.A. and Shakesby R.A. 1984. The status of the "Little Ice Age" in southern Norway: relative age dating of Neoglacial moraines with Schmidt Hammer and lichenometry. Boreas 13: 333-46.Google Scholar

  • Mercier D. 2008. Paraglacial and paraperiglacial landsystems: concepts, temporal scales and spatial distribution. Géomorphologie: Relief, Processus, Environment 4: 223-234.Google Scholar

  • Migoń P. 1997. Post-emergence modification of marine cliffs and associated shore platforms ijn periglacial environment, SW Spitsbergen: implications for the efficacy of cryoplanation processes. Quaternary Newsletter 81: 9-17.Google Scholar

  • Moign A. 1974. Geomorphologie du strandflat au Svalbard: problemes (age, origine, processus), methodes de travail. Inter-Nord 13-14: 67-72.Google Scholar

  • Moign A. 1976. L'Action des glaces flottantes sur le littoral et les fonds matins du Spitsberg central et nord-occidental. La Revue de la Geographie de Montreal 30: 51-64.Google Scholar

  • Nansen F. 1922. The strandflat and isostasy. Videmkapsselskapets Skrifier. I. Mat.-Naturu. Klasse. 1921. No. 11: 313 pp.Google Scholar

  • Niedzielski T., Migoń P. and Placek A. 2009. A minimum sample size required for Schmidt Hammer measurements. Earth Surface Processes and Landforms 34: 1713-1725.CrossrefGoogle Scholar

  • Nikiforov S., Pavlidis Y., Rachold V., Grigoryev M., Rivkin M, Ivanova N. and Koreisha M. 2005. Morphogenetic classification of the Arctic coastal zone. Geo-Marine Letters 25: 89-97.CrossrefGoogle Scholar

  • Ødegård R.S. and Sollid J. L. 1993. Coastal cliff temperatures related to the potential for cryogenic weathering processes, western Spitsbergen, Svalbard. Polar Research 12: 95-106.CrossrefGoogle Scholar

  • Ødegård R.S, Etzelmüller B., Vatne G. and Sollid J. 1995. Nearsurface spring temperatures in an Arctic coastal cliff: possible implications of rock breakdown. In: O. Slaymaker (ed.) Steepland geomorphology. Wiley, Chichester: 89-102.Google Scholar

  • Porter N.J. and Trenhaile A.S. 2007. Short-term rock surface expansion and contraction in the intertidal zone. Earth Surface Processes and Landforms 32: 1379-1397.CrossrefGoogle Scholar

  • Porter N.J., Trenhaile A.S., Prestanski K.J. and Kanyaya J.I. 2010. Patterns of surface down-wearing on shore platforms in eastern Canada. Earth Surface Processes and Landforms 35: 1793-1810.CrossrefGoogle Scholar

  • Przybylak R., Kejna M., Araźny A., Maszewski R., Gluza A., Hojan M., Migała K., Sikora S., Siwek K. and Zwoliński Z. 2007. Porównanie warunków meteorologicznych na zachodnim wybrzeżu Spitsbergenu w sezonie letnim 2006 r. In: R. Przybylak, M. Kejna, A. Araźny and P. Głowacki (eds) Abiotyczne środowisko Spitsbergenu w latach 2005-2006 w warunkach globalnego ocieplenia. Wydawnictwo Zakładu Klimatologii, UMK, Toruń: 179-194.Google Scholar

  • Rachlewicz G. 2010. Paraglacial modifications of glacial sediments over millennial to decadal time-scales in the high Arctic (Billefjorden, central Spitsbergen, Svalbard). Quaestiones Geographicae 29: 59-67.Google Scholar

  • Rachlewicz G. and Szczuciński W. 2008. Changes in permafrost active layer thermal structure in relation to meteorological conditions, Petuniabukta, Svalbard. Polish Polar Research 28: 261-278.Google Scholar

  • Rachlewicz G., Szczuciński W. and Ewertowski M. 2007. Post-"Little Ice Age" retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research 28: 159-186.Google Scholar

  • Rachold V., Are F., Atkinson D., Cherkashov G. and Solomon S. 2005. Arctic Coastal Dynamics (ACD): an introduction. Geo-Marine Letters 25: 63-68.CrossrefGoogle Scholar

  • Rapp A. 1960. Talus slopes and mountain walls at Tempelfjorden, Spitsbergen - a geomorphological study of the denudation of slopes in an Arctic locality. Norsk Polarinstitutt Skrifter 119: 96 pp.Google Scholar

  • Salvigsen O. 1984. Occurrence of pumice on raised beaches and Holocene shoreline displacement in the inner Isfjorden area, Svalbard. Polar Research 2: 107-113.CrossrefGoogle Scholar

  • Selby M.J. 1980. A rock mass strength classification for geomorphic purposes: with test from Antarctica and New Zealand. Zeitschrift für Geomorphologie 24: 31-51.Google Scholar

  • Shakesby R.A., Matthews J.A. and Owen G. 2006. The Schmidt hammer as a relative-age dating tool and its potential for calibrated age dating in Holocene glaciated environments. Quaternary Science Reviews 25: 2846-2867.CrossrefGoogle Scholar

  • Stephenson W.J. and Kirk R.M. 2000a. Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand. Part One: The role of waves. Geomorphology 32: 21-41.CrossrefGoogle Scholar

  • Stephenson W.J. and Kirk R.M. 2000b. Development of shore platforms on Kaikoura Peninsula, South Island, New Zealand. Part Two: The role of subaerial weathering. Geomorphology 32: 43-56.CrossrefGoogle Scholar

  • Streletskaya I.D., Vasiliev A.A. and Vanstein B.G. 2009. Erosion of sediment and organic carbon from the Kara Sea coast. Arctic, Antarctic, and Alpine Research 41: 79-87.Google Scholar

  • Szczuciński W., Zajączkowski M. and Scholten J. 2009. Sediment accumulation rates in subpolar fjords - Impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuarine, Coastal and Shelf Science 85: 345-356.Google Scholar

  • Thornton L.E. and Stephenson W.J. 2006. Rock Strength: A Control of Shore Platform Elevation. Journal of Coastal Research 22: 224-231.CrossrefGoogle Scholar

  • Trenhaile A.S. 1983. The development of shore platforms in high latitudes. In: D.E. Smith and A.G. Dawson (eds) Shorelines and Isostasy. Institute of British Geographers, Special publication No. 16, London: 77-96.Google Scholar

  • Trenhaile A.S. 1997. Coastal Dynamics and Landforms. Oxford University Press, Oxford: 366 pp.Google Scholar

  • Trenhaile A.S. 2001. Modelling the effect of weathering on the evolution and morphology of shore platforms. Journal of Coastal Research 17: 398-406.Google Scholar

  • Trenhaile A.S. and Mercan D.W. 1984. Frost weathering and the saturation of coastal rocks. Earth Surface Processes and Landforms 9: 321-331.CrossrefGoogle Scholar

  • Trenhaile A.S., Pepper D.A., Trenhaile R.W. and Dalimonte M. 1998. Stacks and Notches at Hopewell Rocks, New Brunswick, Canada. Earth Surface Processes and Landforms 23: 975-988.CrossrefGoogle Scholar

  • Trenhaile A.S., Porter N.J. and Kanyaya J.I. 2006. Shore platform processes in eastern Canada. Géographie Physique et Quaternaire 60: 19-30.Google Scholar

  • Viles H., Goudie A., Grab S. and Lalley J. 2011. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surface Processes and Landforms 36: 320-333.CrossrefGoogle Scholar

  • Wangensteen B., Eiken T., Odegard R.S. and Sollid J.L. 2007. Measuring coastal cliff retreat in the Kongsfjorden area, Svalbard, using terrestrial photogrammetry. Polar Research 26: 14-21.CrossrefGoogle Scholar

  • Werenskiold W. 1952. The Strand Flat of Spitsbergen. Geografisk Tidsskrift 52: 302-309.Google Scholar

  • Winkler S. 2009. First attempt to combine terrestrial cosmogenic nuclide (10Be) and Schmidt hammer relative-age dating: Strauchon Glacier, Southern Alps, New Zealand. Central European Journal of Geosciences 1: 274-290.Google Scholar

About the article


Published Online: 2011-08-30

Published in Print: 2011-01-01


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/v10183-011-0017-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M.C. Strzelecki, M. Kasprzak, M. Lim, Z.M. Swirad, M. Jaskólski, Ł. Pawłowski, and P. Modzel
Science of The Total Environment, 2017, Volume 607-608, Page 443
[3]
Evangeline G. Sessford, Maj Gøril Bæverford, and Anne Hormes
Polar Research, 2015, Volume 34, Number 1, Page 24122
[4]
M. S. Brook and S. Winkler
Earth Surface Processes and Landforms, 2016, Volume 41, Number 12, Page 1804
[5]
Marek W. Ewertowski, David J. A. Evans, David H. Roberts, and Aleksandra M. Tomczyk
Journal of Maps, 2016, Volume 12, Number sup1, Page 476
[6]
Mateusz C. Strzelecki, Antony J. Long, and Jerry M. Lloyd
Permafrost and Periglacial Processes, 2017, Volume 28, Number 1, Page 4
[7]
H. Lantuit, P. P. Overduin, and S. Wetterich
Permafrost and Periglacial Processes, 2013, Volume 24, Number 2, Page 120

Comments (0)

Please log in or register to comment.
Log in