Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …
Volume 33, Issue 1


Genetic and epigenetic variation in a cosmopolitan grass Poa annua from Antarctic and Polish populations

Katarzyna Chwedorzewska
  • Instytut Biochemii i Biofizyki PAN, Zakład Biologii Antarktyki, ul. Pawińskiego 5a, 02-106 Warszawa, Polska
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Bednarek
Published Online: 2012-04-06 | DOI: https://doi.org/10.2478/v10183-012-0004-5

Genetic and epigenetic variation in a cosmopolitan grass Poa annua from Antarctic and Polish populations

Poa annua L. is the only non-native vascular plant that was successfully established in the maritime Antarctic. This project aimed to determine the amount of genetic and epigenetic variation within and between two populations of P. annua, one from South Shetland Is. (Antarctic) and the other one from Central Europe. We applied two AFLP marker systems, using endonucleases that recognised the same restriction site but differed in their sensitivity towards methylation. The Antarctic population differed from the Polish one both at the genetic and epigenetic levels. Genetic variability in the Antarctic population was lower than in the Polish one. Some loci in the Antarctic population showed signs of selection. The difference between Polish and Antarctic populations might be due to a weak bottleneck effect followed by population expansion. Using only epigenetic markers, the Antarctic population exhibited increased variation level compared to the Polish one. These may have resulted from plastic responses to environmental factors and could be associated with survival in extreme conditions.

Keywords: Antarctic; Poa annua; invasive species; metAFLP

  • Alacs E. A., P. B. S., De Tores P. J. and Krauss S. L. 2010. Population genetic structure of island and mainland populations of the quokka, Setonix brachyurus (Macropodidae): a comparison of AFLP and microsatellite markers. Conservation Genetics 17: 297-309.Google Scholar

  • Antao T. and Beaumont M. A. 2011. Mcheza: A workbench to detect selection using dominant markers. Bioinformatics 1010.1093/bioinformatics/btr253.Google Scholar

  • Bednarek P. T., Orłowska R., Koebner R. M. D. and Zimny J. 2007. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biology http://www.biomedcentral.com/1471-2229/7/10 http://www.biomedcentral.com/1471-2229/7/10

  • Berger S. L. 2007. The complex language of chromatin regulation during transcription. Nature 447: 407-412.Google Scholar

  • Bird A. 2007. Perceptions of epigenetics. Nature 447: 396-398.Google Scholar

  • Bossdorf O., Richards C. L. and Pigliucci M. 2008. Epigenetics for ecologists. Ecology Letters 11: 106-115.PubMedGoogle Scholar

  • Boyko A. and Kovalchuk I. 2011. Genome instability and epigenetic modification - heritable responses to environmental stress? Current Opinion in Plant Biology 14: 260-266.PubMedCrossrefGoogle Scholar

  • Bruce T. A., Matthes M. C., Napier J. A. and Pickett J. A. 2007. Stressful "memories" of plants: evidence and possible mechanisms. Plant Science 173: 603-608.CrossrefGoogle Scholar

  • Chen X. Y., Li N., Shen L. and Li Y. Y. 2003. Genetic structure along a gaseous organic pollution gradient: a case study with Poa annua L. Environmental Pollution 124: 449-455.CrossrefGoogle Scholar

  • Chinnusamy V. and Zhu J. K. 2009. Epigenetic regulation of stress response in plants. Current Opinion in Plant Biology 12: 133-139.CrossrefGoogle Scholar

  • Chwedorzewska K. J. 2008. Poa annua L. in Antarctic - searching for the source of introduction. Polar Biology 31: 263-268.CrossrefGoogle Scholar

  • Chwedorzewska K. J. 2009. Terrestrial Antarctic Ecosystems at the Changing World - an overview. Polish Polar Research 30: 263-273.CrossrefGoogle Scholar

  • Chwedorzewska K. J. 2010. Recent rapid regional climate changes in Antarctic and their influence on a low diversity ecosystems. Papers on Global Change IGBP 17: 17-30.Google Scholar

  • Chwedorzewska K. J. and Bednarek P. T. 2011. Genetic and epigenetic studies on populations of Deschampsia antarctica Desv. from contrasting environments at King George Islands. Polish Polar Research 32:15-26.Google Scholar

  • Chwedorzewska K. J. and Korczak M. 2010. Human impact upon the environment in the vicinity of Arctowski Station, King George Island, Antarctica. Polish Polar Research 31: 45-60.CrossrefGoogle Scholar

  • Convey P. 2006. Antarctic climate change and its influences on terrestrial ecosystems In: D. M. Bergstrom, P. Convey and A. H. L. Huiskes (eds) Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Springer, Dordrecht: 253-272.Google Scholar

  • Cornuet J. M. and Luikart G. 1997. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014.Google Scholar

  • Darmency H. and Gasquez J. 1981. Inheritance of triazine resistance in P. annua: consequences for population dynamics. New Phytolgist 89: 487-493.CrossrefGoogle Scholar

  • Darmency H. and Gasquez J. 1997. Spontaneous hybridization of the putative ancestors of the allotetraploid Poa annua.New Phytolgist 136: 497-501.CrossrefGoogle Scholar

  • Dlugosch K. M. and Hyse C G. 2008. Genotypes on the move: some things old and some things new shape the genetics of colonization during species invasions. Molecular Ecology 17: 4583-4585.PubMedCrossrefGoogle Scholar

  • Dlugosch K. M. and Parker M. 2008a. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecology Letters 11: 701-709.CrossrefPubMedGoogle Scholar

  • Dlugosch K. M. and Parker M. 2008b. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17: 431-449.PubMedCrossrefGoogle Scholar

  • Duchesne P. and Bernatchez L. 2002. AFLPOP: Acomputer program for simulated and real population allocation based on AFLP data. Molecular Ecology Notes 3: 380-383.CrossrefGoogle Scholar

  • Ellis W. M. 1973. The breeding system and variation in populations of Poa annua L. Evolution 27: 656-662.CrossrefGoogle Scholar

  • Evanno G., Regnaut V. S. and Goudet J. 2005. Detecting the number of clusters of individuals using the structure: a simulation study. Molecular Ecology 14: 2611-2620.CrossrefPubMedGoogle Scholar

  • Excoffier L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13: 853-64.PubMedCrossrefGoogle Scholar

  • Excoffier L. and Lischer H. L. 2010. Arlequin suite ver 35: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567.CrossrefGoogle Scholar

  • Falush D., Stephens M. and Pritchard J. K. 2007. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes 7: 574-578.CrossrefPubMedGoogle Scholar

  • Finnegan E. J. 2001. Epialleles - a source of random variation in times of stress. Current Opinion in Plant Biology 5: 101-106.Google Scholar

  • Finnegan E. J. 2010. DNA Methylation: a Dynamic Regulator of Genome Organization and Gene Expression in Plants. In: E. C. Pau and M. R. Davey (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer-Verlag, Dordrecht: 295-323.Google Scholar

  • Fiuk A., Bednarek P. T. and Rybczyński J. J. 2010. Flow Cytometry, HPLC-RP, and metAFLP Analyses to Assess Genetic Variability in Somatic Embryo-Derived Plantlets of Gentiana pannonica Scop. Plant Molecular Biology Report 28: 413-420.CrossrefGoogle Scholar

  • Foll M. and Gaggiotti O. A. 2008. Genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977-993.Google Scholar

  • Frenot Y., Chown S. L., Whinam J., Selkirk P. M., Convey P., Skotnicki M. and Bergstrom D. M. 2005. Biological invasion in the Antarctic: extent, impacts and implications. Biological Reviews 80: 45-72.CrossrefGoogle Scholar

  • Frenot Y., Gloaguen J. C., Masse L. and Lebouvier M. 2001. Human activities, ecosystem disturbance and plant invasions in sub-Antarctic Crozet, Kerguelen and Amsterdam Islands. Biological Conservation 101: 33-50.CrossrefGoogle Scholar

  • Frenot Y., Gloaguen J. C. and Tréhen P. 1997. Climate change in Kerguelen Islands and colonization of recently deglaciated area by Poa kerguelensis and Poa annua.In: D. W. H. Walton (ed.) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge: 358-366.Google Scholar

  • Fu Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147: 915-925.Google Scholar

  • Grant-Downton R. T. and Dickinson H. G. 2005. Epigenetics and its implication for plant biology 1. "The epigenetic network in plants". Annals of Botany 96: 188-195.Google Scholar

  • Grant-Downton R. T. and Dickinson H. G. 2006. Epigenetics and its implication for plant biology 2. "The Epigenetic epiphany": Epigenetics, evolution and beyond. Annals of Botany 97: 11-27.Google Scholar

  • Halliburton R. 2004. Introduction to Population Genetics. Pearson Education Int., Upper Saddle River, New Jersey, USA: 650 pp.Google Scholar

  • Hammer Ø., Harper D. A. T. and Ryan P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 1-9 http://palaeoelectronica.org/2001_1/past/issue1_01.htm. http://palaeoelectronica.org/2001_1/past/issue1_01.htm

  • Heide O. M. 2001. Flowering responses of contrasting ecotypes of Poa annua and their putative ancestors Poa infirma and Poa supina.Annals of Botany 87: 795-804.CrossrefGoogle Scholar

  • Henderson I. R. and Jacobsen S. E. 2007. Review Article. Epigenetic inheritance in plants. Nature 447: 418-424.Google Scholar

  • Herrera C. M. and Bazaga P. 2010. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytologist 187: 867-876.CrossrefGoogle Scholar

  • Hovin A. W. 1957. Seasonal variation ofmeiotic chromosome pairing in haploid Poa annua L. Genetics 42: 377-78.Google Scholar

  • Hughes K. A. and Convey P. 2010. The protection of Antarctic terrestrial ecosystems from inter-and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. International Journal of Climatology 20: 96-112.Google Scholar

  • Hughes K. A., Convey P., Maslen N. R. and Lewis Smith R. I. 2009. Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biological Invasions 12: 875-891.Google Scholar

  • Hutchinson C. S. and Seymour G. B. 1982. Biological flora of the British Isles. Poa annua L. Journal of Ecology 70: 887-901.CrossrefGoogle Scholar

  • Jablonka E. 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology 84: 131-176.CrossrefGoogle Scholar

  • Jaligot E., Beulé T. and Rival A. 2002. Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-associated polymorphism. Theoretical and Applied Genetics 104: 1263-1269.Google Scholar

  • Johnson P. G. 1995. Genetics and physiology of flowering in Poa annua L. Ph. D. diss. University of Minnesota., St. Paul: 129 pp.Google Scholar

  • Johnson P. G., Rummele B. A., Velguth P., White D. B. and Ascher P. D. 1993. An overview of Poa annua L. reproductive biology. International Turfgrass Society Research Journal 7: 789-804.Google Scholar

  • Kalisz S. and Purugganan M. D. 2004. Epialleles via DNA methylation: consequences for plant evolution. Trends in Ecology and Evolution 19: 309-314.Google Scholar

  • Kumar S., Skjæveland A., Orr R. J. S., Enger P., Ruden T., Mevik B. H., Burki F., Botnen A. and Shalchian-Tabrizi K. 2009. AIR: A batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinformatics 10: 357.CrossrefGoogle Scholar

  • Labra M., Ghiani A., Citterio S., Sgorbati S., Sala F., Vannini C., Ruffini-Castigilione M. and Baracale M. 2002. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biology 4: 694-699.CrossrefGoogle Scholar

  • Law R. 1981. The dynamics of colonising population Poa annua. Ecology 62: 1267-1277.CrossrefGoogle Scholar

  • Lewis Smith R. I. 1996. Introduced plants in Antarctica: potential impacts and conservation issues. Biological Conservation 76: 135-146.CrossrefGoogle Scholar

  • Lira-Medeiros C. F., Parisod C., Fernandes R. A., Ata C. S., Ardoso M. A. and Ferreira P. C. 2010. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5: e10326.CrossrefGoogle Scholar

  • Luikart G., Allendorf F. W. and Sherwin W. B. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity 89: 238-247.CrossrefGoogle Scholar

  • Mengistu L. W., Mueller-Warrant G. W. and Barker R. E. 2000. Genetic diversity of Poa annua in western Oregon grass seed crop. Theoretical and Applied Genetics 101:70-79.CrossrefGoogle Scholar

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.PubMedGoogle Scholar

  • Olech M. 1996. Human impact on terrestrial ecosystems in west Antarctica. Proceedings of the NIPR Symposium on Polar Biology 9: 299-306.Google Scholar

  • Olech M. 1998. Synantropization of the flora of Antarctica: an issue. In: J. B. Faliński, W. Adamowski and B. Jackowiak (eds) Synantropization of plant cover in new Polish research. Phytocoenosis 10, Supplement Cartographiae Geobotanicae 9: 269-273.Google Scholar

  • Olech M. and Chwedorzewska K. J. 2011. The first appearance and establishment of alien vascular plant in natural habitats on the forefield of retreating glacier in Antarctica. Antarctic Science 23: 153-154.CrossrefGoogle Scholar

  • Peakall R. and Smouse P. E. 2001. GenALEx V5: Population genetic software for teaching and research. Australian National University, Canberra. www.anu.edu.au/BoZo/GenALEx/.www.anu.edu.au/BoZo/GenALEx/

  • Rapp R. A. and Endel J. F. 2005. Epigenetics and plant evolution. New Phytologist 168: 81-91.CrossrefGoogle Scholar

  • Ray N., Currat M. and Excoffier L. 2003. Intra-deme molecular diversity in spatially expanding populations. Molecular Biology Evolution 20: 76-86.CrossrefGoogle Scholar

  • Rogers A. R. 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49: 608-615.CrossrefGoogle Scholar

  • Roldán-Ruiz I., Dendauw J., VAN Bockstaele E., Depicker A. and de Loose M. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6: 125-134.CrossrefGoogle Scholar

  • Salmon A., Clotault J., Jenczewski E., Chable V. and Manzanares-Dauleux M. J. 2008. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Science 174: 61-70.CrossrefGoogle Scholar

  • Schönswetter P. and Tribsch A. 2005. Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54: 725-732.CrossrefGoogle Scholar

  • Shannon C. E. and Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL: 117 pp.Google Scholar

  • Stewards N., Ito M., Yamaguchi Y., Koizumi N. and Sano H. 2002. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry 277: 37741-37746.CrossrefGoogle Scholar

  • Tan M. P. 2010. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiology and Biochemistry 48: 21-26.CrossrefGoogle Scholar

  • Tero N., Aspi J., Siikamäki P., Jäkäläniemi A. and Tuomi J. 2003. Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Molecular Ecology 12: 2073-2085.CrossrefGoogle Scholar

  • Tutin T. G. 1952. Origin of Poa annua L. Nature 1969: 160.Google Scholar

  • Tutin T. G. 1957. A contribution to the experimental taxonomy of Poa annua L. Watsonia 4: 1-10.Google Scholar

  • Turner J., Colwell S. R., Marshall G. J., Lachilan-Cope T. A., Carleton A. M., Jones P. D., Lagun V., Reid P. A. and Iagovkuna S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology 25: 279-294.CrossrefGoogle Scholar

  • Uthup T. K., Ravindran M., Bini K. and Thakurdas S. 2011. Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Molecular Plant: 6: 996-1013.CrossrefGoogle Scholar

  • Vargas J. M. and Turgeon A. J. 2004. Poa annua - physiology, culture, and control of annual bluegrass. Wiley and Sons, Inc., Hoboken, New Jersey: 165 pp.Google Scholar

  • Verhoeven K. J. F, van Dijk P. J. and Biere A. 2010. Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Molecular Ecology 19: 315-324.CrossrefGoogle Scholar

  • Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zauber M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.CrossrefGoogle Scholar

About the article

Published Online: 2012-04-06

Published in Print: 2012-01-01

Citation Information: Polish Polar Research, Volume 33, Issue 1, Pages 63–80, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/v10183-012-0004-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Halina Galera, Maciej Wódkiewicz, Ewa Czyż, Sławomir Łapiński, Maria Elżbieta Kowalska, Mariusz Pasik, Marcin Rajner, Paweł Bylina, and Katarzyna J. Chwedorzewska
Polar Biology, 2017, Volume 40, Number 4, Page 939
Kevin A. Hughes and Luis R. Pertierra
Biological Conservation, 2016, Volume 200, Page 149
Marius A. Wenzel and Stuart B. Piertney
Molecular Ecology, 2014, Volume 23, Number 17, Page 4256
Joanna Machczyńska, Renata Orłowska, Janusz Zimny, and Piotr Tomasz Bednarek
Molecular Breeding, 2014, Volume 34, Number 3, Page 845
Maciej Wódkiewicz, Halina Galera, Katarzyna J. Chwedorzewska, Irena Giełwanowska, and Maria Olech
Arctic, Antarctic, and Alpine Research, 2013, Volume 45, Number 3, Page 415
A. Pérez-Figueroa
Molecular Ecology Resources, 2013, Volume 13, Number 3, Page 522

Comments (0)

Please log in or register to comment.
Log in