Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …
Volume 34, Issue 1 (Mar 2013)

Studies on diversity of soil microfungi in the Hornsund area, Spitsbergen

Siti Hafizah Hafizah
  • Institute of Biological Science, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia
  • National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Siti Aisyah Alias
  • Corresponding author
  • Institute of Biological Science, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia
  • National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hii Yii Siang
  • Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Smykla
  • Zakład Bioróżnorodności, Instytut Ochrony Przyrody PAN, al. Mickiewicza 33, 31−120 Kraków, Poland
  • Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Rd., Wilmington, NC 28403, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ka−Lai Pang
  • Institute of Marine Biology and Center of Excellence for Marine Bioenvironment and Biotechno− logy, National Taiwan Ocean University, 2 Pei−Ning Road, Keelung 202−24, Taiwan (R.O.C.)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sheng−Yu Guo
  • Institute of Marine Biology and Center of Excellence for Marine Bioenvironment and Biotechno− logy, National Taiwan Ocean University, 2 Pei−Ning Road, Keelung 202−24, Taiwan (R.O.C.)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Convey
  • National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia
  • British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-26 | DOI: https://doi.org/10.2478/popore-2013-0006


We assessed culturable soil microfungal diversity in various habitats around Hornsund, Spitsbergen in the High Arctic, using potato dextrose agar (PDA) medium. Thermal growth classification of the fungi obtained was determined by incubating them in 4°C and 25°C, permitting separation of those with psychrophilic, psychrotolerant and mesophilic char− acteristics. In total, 68 fungal isolates were obtained from 12 soil samples, and grouped into 38 mycelial morphotypes. Intergenic spacer regions of these morphotypes were sequenced, and they represented 25 distinct taxonomic units, of which 21 showed sufficient similarity with available sequence data in NCBI to be identified to species level. Soil under ornithogenic influence showed the highest species diversity, including sequences assigned to Mortierella macrocystis, M. elongata, Mortierella sp., Cudoniella sp., Varicosporium elodeae, Beauveria bassiana, Geomyces pannorum, Penicillium sp. and Atradidymella muscivora. Fourteen taxa were classified as psychrophilic, seven mesophilic, and four psychrotolerant.

Keywords : Arctic; Svalbard; soil microbiology; microfungi

  • ABYZOV S.S. 1993. Microorganisms in the Antarctic ice. In: E.I. Friedman (ed.) Antarctic Microbiol−ogy. Wiley−Liss, New York: 265-285.Google Scholar

  • ADAMS B.J., BARDGETT R.D., AYRES E., WALL D.H., AISLABIE J., BAMFORTH S., BARGAGL R., CARY C., CAVACINI P., CONNELL L., CONVEY P., FELL J.W., FRATI F., HOGG I.D., NEWSHAM K.K., O’DONNELL A.,RUSSELL N., SEPPELT R.D. and STEVENS M.I. 2006. Diversity and distri− bution of Victoria land biota. Soil Biology and Biochemistry 38: 3003-3018.Google Scholar

  • ALIAS S.A. and SUHAILA O. 2007. Preliminary studies on diversity of soil microfungi from Ny−Ålesund, Svalbard. In: R. Azzolini (ed.) Polarnet Technical Report 2008. Polarnet, Italy: 19-21.Google Scholar

  • ARENZ B.E. and BLANCHETTE R.A. 2011. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biology and Biochem−istry 43: 308-315.Google Scholar

  • ARENZ B.E., HELD B.W., JURGENS J.A. and BLANCHETTE R.A. 2011. Fungal colonization of exotic substrates in Antarctica. Fungal Diversity 49: 13-22.CrossrefGoogle Scholar

  • ARENZ B.E., HELD B.W., JURGENS J.A., FARREL R.L. and BLANCHETTE R.A. 2006. Fungal diver− sity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology and Bio−chemistry 38: 3057-3064.Google Scholar

  • ARNEBRANT K., BÅÅTH E. and SODERSTROM B. 1990. Changes in microfungal community struc− ture after fertilization of Scots pine forest soil with ammonium nitrate or urea. Soil Biology andBiochemistry 22: 309-312.Google Scholar

  • BAZZIGHER VON G. 1976. Der schwarze Schneeschimmel der Koniferen [Herpotrichia juniperi (Duby) Petrak und Herpotrichia coulteri (Peck) Bose]. European Journal of Forest Pathology 6: 109-122.CrossrefGoogle Scholar

  • BERGERO R., GIRLINDA M., VARESE G.C., INTILI D. and LUPPI A.M. 1999. Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biology 21: 361-368.CrossrefGoogle Scholar

  • BLANCHETTE R.A., HELD B.W., ARENZ B.E., JURGENS J.A., BALTES N.J., DUNCAN S.M. and FARRELL R.L. 2010. An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microbial Ecology 60: 29-38.CrossrefGoogle Scholar

  • BUTINAR L., STRMOLE T. and GUNDE−CIMERMAN N. 2011. Relative incidence of Ascomycetous yeast in Arctic coastal environments. Environmental Microbiology 61: 832-843.Google Scholar

  • CAPDET M. and ROMERO A.I. 2010. Fungi from palms in Argentina. Mycotaxon 112: 339-355.CrossrefGoogle Scholar

  • CHAVERRI P., SALGADO C., HIROOKA Y., ROSSMAN A.Y. and SAMUELS G.J. 2011. Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon−like anamorphs. Studies in Mycology 68: 57-78.CrossrefGoogle Scholar

  • CHLEBICKI A. 2009. Some endophytes of Juncus trifidus from Tatra Mts. in Poland. Acta Mycologica 44: 11-17.CrossrefGoogle Scholar

  • D’AMICO S., COLLINS T., MARX J.C., FELLER G. and GERDAY C. 2006. Psychrophilic mocro− organisms: challenges for life. EMBO reports 7: 385-389.CrossrefGoogle Scholar

  • DAVEY M.L., TSUNEDA A. and CURRAH R.S. 2009. Pathogenesis of bryophyte hosts by the asco− mycete Atradidymella muscivora. American Journal of Botany 96: 1274-1280.CrossrefGoogle Scholar

  • DEL FRATE G. and CARETTA G. 1990. Fungi isolated from Antarctic material. Polar Biology 11: 1-7.Google Scholar

  • FELLER G. and GERDAY C. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nature Re−views Microbiology 1: 200-208.Google Scholar

  • FIEDUREK J., GROMADA A., SLOMKA A., KORNILOWICZ−KOWALSKA T., KUREK E. and MELKE J. 2003. Catalase activity in arctic microfungi grown at different temperatures. Acta BiologicaHungarica 54: 5-112.Google Scholar

  • GAMS W. 1971. Cephalosporium−artige Schimmelpilze (Hyphomycetes). Gustav Fischer Verlag, Stuttgart: 262 pp.Google Scholar

  • GAWAS−SAKHALKAR P. and SINGH S.M. 2011. Fungal community associated with Arctic moss, Tetraplodon mimoides and its rhizosphere: bioprospecting for production of industrially useful enzymes. Current Science 100: 1701-1705.Google Scholar

  • GUNDE−CIMERMEN N., SONJAK S., ZALAR P., FRISVAD J.C., DIDERICHSEN B. and PLEMENITAS A. 2003. Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Physics and Chemistry of the Earth 28: 1273-1278.Google Scholar

  • HART S.C., FIRESTONE M., PAUL E.A. and SMITH J.L. 1993. Flow and fate of soil nitrogen in an an− nual grassland and a young mixed−conifer forest. Soil Biology and Biochemistry 25: 431-442.Google Scholar

  • HARTIG R. 1888. Herpotrichia nigra n. sp. Allgemainen Forst und Jagdzeitung 64: 15-17.Google Scholar

  • HII Y.S., ALIAS S.A., HUSSIN A., ZAKARIA M.P., MOREANO H., RIOFRIO M., CARDENAS W. and ORDONEZ N. 2009. Surface coverage and some baseline soil chemicals of Punta Fort William, Greenwich Island, Antarctica. Academy of Sciences Malaysia Science Journal 3: 143-151.Google Scholar

  • IZZO A., AGBOWO J. and BRUNS T. 2005. Detection of plot−level changes in ectomycorrhizal com− munities across years in an old−growth mixed−conifer forest. New Phytologist 166: 619-630.CrossrefGoogle Scholar

  • JALINK L.M. and NAUTA M.M. 2004. Mushrooms in Spitsbergen. In: N. Boschman and L. Hacquebord (eds.) Permanence in diversity. Netherlands Ecological research on Edgeøya Spitsbergen. Circum−polar Studies 1. Barkhuis Publishing, Groningen: 88-102.Google Scholar

  • JONASSON S., CASTRO J. and MICHELSEN A. 2006. Interactions between plants, litter and microbes in cycling of nitrogen and phosphorus in the arctic. Soil Biology and Biochemistry 38: 526-532.Google Scholar

  • KERRY E. 1990. Microorganisms colonizing plants and soil subjected to different degree of human activity, including petroleum contamination, in the Vestfold Hills and MacRobertson land, Antarctica. Polar Biology 10: 423-430.Google Scholar

  • KRISHNAN A., ALIAS S.A., WONG C.M.V.L., PANG K.L. and CONVEY P. 2011. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biology 34: 1535-1542.CrossrefGoogle Scholar

  • KUREK E., KORNIŁŁOWICZ−KOWALSKA T., SŁOMKA A. andMELKE J. 2007. Characteristics of soil filamentous fungi communities isolated from various micro−relief forms in the high Arctic tun− dra (Bellsund region, Spitsbergen). Polish Polar Research 28: 57-73.Google Scholar

  • LAICHMANOVA M., SELBMANN L. and BARTAK M. 2009. Diversity of microfungi from James Ross Island, Antarctic. In:M. Bartak, J. Hajek and P. Vaczi (eds) Structure and Function of AntarcticTerrestrial Ecosystems. Masaryk University, Brno: 10-13.Google Scholar

  • LUDWIG J.A. and REYNOLDS J.F. 1988. Statistical ecology. A primer on methods and computing. John Wiley & Sons, New York: 337 pp.Google Scholar

  • MAGAN N. 2007. Fungi in extreme environment. In: C.P. Kubicheck and I.S. Druzhinina (eds) Envi−ronmental and microbial relationships, 2nd edn. Springer−Verlag, Berlin Heidelberg: 85-201.Google Scholar

  • MARSHALL W.A. 1998. Aerial transport of keratinaceous substrate and distribution of the fungus Geomyces pannorum in Antarctic soils. Microbial Ecology 36: 212-219.CrossrefPubMedGoogle Scholar

  • MEDARDI G. 2006. Non fimicolous Arctic−alpine ascomycetes collected in Austria 1. ÖsterreichischenZeitschrift für Pilzkunde 15: 21-29.Google Scholar

  • MERCANTINI R., MARSELLA R. and CERVELLATI M.C. 1989. Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106: 47-52.CrossrefPubMedGoogle Scholar

  • MIGAŁA K., NASIOŁKOWSKI T. and PEREYMA J. 2008. Topoclimatic conditions in the Hornsund area (SW Spitsbergen) during the ablation season 2005. Polish Polar Research 29: 73-91.Google Scholar

  • MILLER J.L., VARGAS A.−M., TUININGA A.R., DANIELS T.J., STAFFORD K.C. and FALCO R.C. 2004. Entomopathogenic fungal infections of Ixodes scapularis (Acari: Ixodidae). Inoculum 55: 27.Google Scholar

  • MORITA R.Y. 1975. Psychrophilic bacteria. Bacteriological Reviews 39: 144-167.PubMedGoogle Scholar

  • OMAR S., ALIAS S.A., SMYKLA J., MORENO H., GUERRA M.L. and MING C.Y. 2009. Comparision of diversity of microfungi in ornithogenic soils from Beaufort Island, continental Antarctica and Barrientos Islands, maritime Antarctica. Academy of Sciences Malaysia Science Journal 3: 187-197.Google Scholar

  • ONOFRI S., ZUCCONI L. and TOSI S. 2007. Continental Antarctic fungi. IHW Verlag, Berlin: 247 pp.Google Scholar

  • OZERSKAYA S., KOCHKINA G., IVANUSHKINA N. and GILICHINSKY D.A. 2009. Fungi in perma− frost. In: R. Margesin (ed.) Permafrost Soils, Soil Biology 16: 85-95.Google Scholar

  • PANG K.L., CHIANG M.W.L. andVRIJMOED L.L.P. 2009. Remispora spitsbergenensis sp. nov. ama− rine lignicolous ascomycete from Svalbard, Norway. Mycologia 101: 531-534.CrossrefGoogle Scholar

  • PANG K.L., CHOW R.K.K., CHAN C.W. and VRIJMOED L.L.P. 2011. Diversity and physiology of marine lignicolous fungi in Arctic waters: a preliminary account. Polar Research 30: 5859 doi: 10.3402/polar.v300.5859 PEARCE D.A., BRIDGE P.D., HUGHES K.A., SATTLER B., PSENNER R. and RUSSELL N.J. 2009. Mi− croorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology 69:143-157.CrossrefGoogle Scholar

  • QUINN J.A. 2008. Arctic and Antarctic tundra. In: J.A. Quinn (ed.) Arctic and alpine biomes. Green− wood Press, Westport, London: 33-81.Google Scholar

  • RAO S., CHAN Y., LACAP D.C., HYDE K.D., POINTING S.B. and FARRELL R.L. 2012. Low−diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biology 35: 567-574.CrossrefGoogle Scholar

  • ROBINSON C.H. 2001. Cold adaptation in Arctic and Antarctic fungi. New Phytologist 151: 341-353.CrossrefGoogle Scholar

  • ROBINSON C.H., SAUNDERS P.W., MADAN N.J., PRYCE−MILLER E.J. and PENTECOST A. 2004. Does nitrogen deposition affect soil microfungal diversity and soil N and P dynamics in a high Arctic ecosystem? Global Change Biology 10: 1065-1079.CrossrefGoogle Scholar

  • SAMUELS G.J., ROSSMAN A.Y., CHAVERRI P., OVERTON B.E. and PÕLDMAA K. 2006. Hypocrealesof the Southeastern United States: An Identification Guide. Centraalbureau voor Schimmel cul− tures, Utrecht: 145 pp.Google Scholar

  • SINGH P. and SINGH S.M. 2012. Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biology 35: 575-583.CrossrefGoogle Scholar

  • SINCLAIR N.A. and STOKES J.L. 1963. Role of oxygen in the cell yields of psychrophiles and meso− philes at low temperatures. Journal of Bacteriology 85: 164-167.Google Scholar

  • SINGH S.M., PUJA G. and BHAT D.J. 2006. Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Current Science 90: 1388-1392.Google Scholar

  • SMITH M.E., DOUGHAN G.W. and RIZZO D.M. 2007. Ectomycorrhizal community structure in a xe− ric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. NewPhytologist 174: 847-863.CrossrefGoogle Scholar

  • SMYKLA J.,WOŁEK J. and BARCIKOWSKI A. 2007. Zonation of vegetation related to penguin rooker− ies on King George Island, Maritime Antarctic. Arctic, Antarctic and Alpine Research 39: 143-151.CrossrefGoogle Scholar

  • STEMPNIEWICZ L., BŁACHOWIAK−SAMOŁYK K. and WĘSŁAWSKI J.M. 2007. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem - a scenario. Deep−Sea Research Part II 54: 2934-2945.Google Scholar

  • THORMANN M.N., CURRAH R.S. and BAYLEY S.E. 2001. Microfungi isolated from Sphagnumfuscum from a Southern Boreal Bog in Alberta, Canada. Bryologist 104: 548-559.CrossrefGoogle Scholar

  • TOSI S., CASADO B., GERDOL R. and CARETTA G. 2002. Fungi isolated from Antarctic mosses. Po−lar Biology 25: 262-268.Google Scholar

  • WANG Z., BINDER M., SCHOCH C.L., JOHNSTON P.R., SPATAFORA J.W. and HIBBET D.S. 2006. Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): A nuclear rDNA phylogeny. Molecular Phylogenetics and Evolution 41: 295-312.CrossrefPubMedGoogle Scholar

  • WARCUP J.H. 1950. The soil−plate method for isolation of fungi from soil. Nature 166: 117-118.PubMedCrossrefGoogle Scholar

  • WATLING R. 1987. Larger Arctic−Alpine fungi in Scotland. In: G.A. Laursen, J.F. Ammirati and S.A. Redhead (eds) Arctic and Alpine Mycology III. Plenum Press, New York: 17-45.Google Scholar

  • WEISER J. 1987. Mosquito−killing activity of strains of Tolypocladium cylindrosporum and T.niveum. Česká Mykologie 41: 219-224.Google Scholar

  • WHITE T.J., BRUNS T., LEE S. and TAYLOR J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis, D.H. Gelfand, J. Sninsky and T.J.Google Scholar

  • White (eds) PCR protocols: a guide to methods and application. Academic Press, San Diego: 315-322.Google Scholar

  • YUKI T.,MASAKI U., HIROSHI K. and TORU O. 2005. Fungi decomposing leaf litter under the snow. Proceeding of the Annual Meeting of the Mycological Society of Japan. Japan: 208 pp.Google Scholar

  • ZIMMERMANN G. 2008. The entomopathogenic fungi Isaria farinose (formerly Paecilomyces fari−nosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): bi− ology, ecology and use in biological control. Biocontrol Science and Technology 18: 865-901.CrossrefGoogle Scholar

  • ZMUDCZYŃSKA K., OLEJNICZAK I., ZWOLICKI A., ILISZKO L., CONVEY P. and STEMPNIEWICZ L. 2012. Influence of allochtonous nutrients delivered by colonial seabirds on soil collembolan communities on Spitsbergen. Polar Biology 35: 1233-1245. CrossrefGoogle Scholar

About the article

Published Online: 2013-02-26

Published in Print: 2013-03-01

Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/popore-2013-0006.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tao Zhang, Neng-Fei Wang, Hong-Yu Liu, Yu-Qin Zhang, and Li-Yan Yu
Frontiers in Microbiology, 2016, Volume 7

Comments (0)

Please log in or register to comment.
Log in