Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …
Volume 34, Issue 3


Extracellular hydrolytic enzyme production by proteolytic bacteria from the Antarctic

Mauro Tropeano / Susana Vázquez
  • Corresponding author
  • Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (1113) Buenos Aires, Argentina
  • Consejo Nacional de Investigaciones Científicas y Técnicas. Rivadavia 1917 (1033) Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvia Coria / Adrián Turjanski
  • Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE−CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2 (1428) Buenos Aires, Argentina
  • Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2 (1428) Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Cicero
  • Fundación Instituto Leloir, Patricias Argentinas 435 (1405) Buenos Aires, Argentina
  • Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Via del Politecnico 1 (00133) Rome, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrés Bercovich / Walter Mac Cormack
  • Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (1113) Buenos Aires, Argentina
  • Instituto Antártico Argentino, Cerrito 1248 (1026) Buenos Aires, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/popore-2013-0014


Cold−adapted marine bacteria producing extracellular hydrolytic enzymes are important for their industrial application and play a key role in degradation of particulate organic matter in their natural environment. In this work, members of a previously−obtained protease−producing bacterial collection isolated from different marine sources from Potter Cove (King George Island, South Shetlands) were taxonomically identified and screened for their ability to produce other economically relevant enzymes. Eighty−eight proteolytic bacterial isolates were grouped into 25 phylotypes based on their Amplified Ribosomal DNA Restriction Analysis profiles. The sequencing of the 16S rRNA genes from representative isolates of the phylotypes showed that the predominant culturable protease−producing bacteria belonged to the class Gammaproteobacteria and were affiliated to the genera Pseudomonas, Shewanella, Colwellia, and Pseudoalteromonas, the latter being the predominant group (64% of isolates). In addition, members of the classes Actinobacteria, Bacilli and Flavobacteria were found. Among the 88 isolates screened we detected producers of amylases (21), pectinases (67), cellulases (53), CM−cellulases (68), xylanases (55) and agarases (57). More than 85% of the isolates showed at least one of the extracellular enzymatic activities tested, with some of them producing up to six extracellular enzymes. Our results confirmed that using selective conditions to isolate producers of one extracellular enzyme activity increases the probability of recovering bacteria that will also produce additional extracellular enzymes. This finding establishes a starting point for future programs oriented to the prospecting for biomolecules in Antarctica.

Keywords: Antarctic; marine bacteria; cold enzymes; psychrophiles

  • ATCM 2002. Naming and numbering system for Antarctic Specially Protected Areas. XXV Antarctic Treaty Consultative Meeting, Warszawa, Poland. Decision 1.Google Scholar

  • BAKERMANS C. 2012. Psychrophiles: life in the cold. In: R. Anitori (ed.) Extremophiles: Microbiology and Biotechnology. Horizon Scientific Press, Hethersett: 53-76.Google Scholar

  • BERNARDET J.F. and NAKAGAWA Y. 2006. An introduction to the family Flavobacteriaceae. In: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt (eds) The Prokaryotes: a Handbook on the Biology of Bacteria, Vol. 7. Springer, New York: 455-480.Google Scholar

  • BRIZZIO S., TURCHETTI B., LIBKIND D., BUZZINI P. and BROOCK M. 2007. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology 53: 519-525.Web of ScienceCrossrefGoogle Scholar

  • BRUNNEGÅRD J., GRANDEL S., STÅHL H., TENGBERG A. and HALL J. 2004. Nitrogen cycling in deesea sediments of the Porcupine Abyssal Plain, NE Atlantic. Progress in Oceanography 63: 159-181.CrossrefGoogle Scholar

  • CAVICCHIOLI R., CHARLTON T., ERTAN H., MOHD OMAR S., SIDDIQUI K.S. and WILLIAMS T.J. 2011. Biotechnological uses of enzymes from psychrophiles. Microbial Biotechnology 4: 449-460.PubMedGoogle Scholar

  • CHEN S., KAUFMAN M.G.,MIAZGOWICZ K.L., BAGDASARIAN M. andWALKER E.D. 2013. Molecular characterization of a cold−active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresource Technology 128: 145-155.Google Scholar

  • CLARKE A., BARNES D.K.Z. and HODGSON D.A. 2005. How isolated is Antarctica? Trends in Ecology and Evolution 20: 1-3.Google Scholar

  • COLLINS T., DÁMICO S., MARX J.C., FELLER G. and GERDAY C. 2007. Cold-adapted enzymes. In: C. Gerday and N. Glansdorff (eds) Physiology and Biochemistry of Extremophiles. ASM Press, Washington DC: 165-179.Google Scholar

  • COWAN D.A. and TOW L.A. 2004. Endangered Antarctic Environments. Annual Review of Microbiology 58: 649-690.CrossrefGoogle Scholar

  • DANG H., ZHU H.,WANG J. and LI T. 2009. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep−sea sediments of the Southern Okinawa Trough. World Jour−nal of Microbiology and Biotechnology 25: 71-79.Web of ScienceGoogle Scholar

  • DIAS A., DINI−ANDREOTE F., LACAVA P.T., SÁ A.L.,MELO I.S., AZEVEDO J.L. and ARAJUO W.L. 2009. Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World Journal of Microbiology and Biotechnology 25: 1305-1311.CrossrefGoogle Scholar

  • EUZÉBY J.P. 1997. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. International Journal of Systematic Bacteriology 47: 590-592.Google Scholar

  • GOMES J. and STEINER W. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology 42: 223-235.Google Scholar

  • GROSSART H.P., LEVOLD F.,ALLGAIER M., SIMON M. and BRINKHOFF T. 2005. Marine diatom species harbour distinct bacterial communities. Environmental Microbiology 7: 860-873.PubMedCrossrefGoogle Scholar

  • HOLMSTRÖM C. and KJELLEBERG S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS MicrobiologyEcology 30: 285-293.CrossrefGoogle Scholar

  • HUNTER E., MILLS H. and KOSTKA J. 2006. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Applied and Environmental Microbiology 72: 5689-5701.CrossrefPubMedGoogle Scholar

  • HUSTON A.L. and DEMING J.W. 2002. Relationships between microbial extracellular enzymatic activity and suspended and sinking particulate organic matter: seasonal transformations in the North Water. Deep−Sea Research II 49: 5211-5225.CrossrefGoogle Scholar

  • KIM O.S., CHO Y.J., LEE K., YOON S.H., KIM M., NA H., PARK S.C., JEON Y.S., LEE J.H., YI H., WON S. and CHUN J. 2012. Introducing EzTaxone: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. International Journal of Systematicand Evolutionary Microbiology 62: 716-721.Web of ScienceGoogle Scholar

  • KIRCHMAN D.L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMSMicrobiology Ecology 39: 91-100. Google Scholar

  • KIRCHMAN D.L., DITTEL A.I., FINDLAY S.E.G. and FISCHER D. 2004. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquatic Microbial Ecology 35: 243-257.CrossrefGoogle Scholar

  • KONIECZNA I., WOJTASIK B., KWINKOWSKI M., BURSKA D., NOWIŃSKI K., ŻARNOWIEC P. and KACA W. 2011. Analysis of cultivable aerobic bacteria isolated from bottom sediments in the Wijdefjorden region, Spitsbergen. Polish Polar Research 32: 181-195.Web of ScienceGoogle Scholar

  • KUDDUS M. and RAMTEKE P.W. 2012. Recent developments in production and biotechnological applications of cold−active microbial proteases. Critical Reviews in Microbiology 38: 330-338.Web of ScienceCrossrefGoogle Scholar

  • KUMAR L., AWASHI G. and SINGH B. 2011. Extremophiles: a novel source of industrially important enzymes. Biotechnology 10: 121-135.Google Scholar

  • LI N.,MENG K.,WANG Y., SHI P., LUO H., BAI Y., YANG P. and YAO B. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Applied Microbiology and Biotechnology 80: 231-240.CrossrefWeb of ScienceGoogle Scholar

  • LOPERENA L., SORIA V., VARELA H., LUPO S., BERGALLI A., GUIGOU M., PELLEGRINO A., BERNARDO A., CALVIŃO A., RIVAS F. and BATISTA S. 2012. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World Journal of Microbiology and Bio−technology 28: 2249-2256.Web of ScienceGoogle Scholar

  • MARGESIN R. and SCHINNER F. 1992. A comparison of extracellular proteases from three psychrotrophic strains of Pseudomonas fluorescens. Journal of General and Applied Microbiology 38: 209-225.CrossrefGoogle Scholar

  • MARGESIN R., NEUNER G. and STOREY K.B. 2007. Cold−loving microbes, plants, and animals: fundamental and applied aspects. Naturwissenschaften 94: 77-99.PubMedWeb of ScienceCrossrefGoogle Scholar

  • OLIVERA N.L., SEQUEIROS C. and NIEVAS M.L. 2007. Diversity and enzyme properties of protease−producing bacteria isolated from sub−Antarctic sediments of Isla de los Estados, Argentina. Extremophiles 11: 517-526.CrossrefWeb of ScienceGoogle Scholar

  • SCHLOSS I.R., ABELE D.,MOREAU S., DEMERS S., BERS A.V., GONZÁLEZ O. and FERREYRA G.A. 2012. Response of phytoplankton dynamics to 19−year (1991-2009) climate trends in Potter Cove (Antarctica). Journal of Marine systems 92: 53-66.Web of ScienceGoogle Scholar

  • SECADES P., ALVAREZ B andGUIJARRO J.A. 2003. Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS MicrobiologyLetters 226: 273-279.CrossrefGoogle Scholar

  • SRINIVAS T.N., NAGESWARA RAO S.S., VISHNU VARDHAN REDDY P., PRATIBHA M.S., SAILAJA B., KAVYA B., HARA KISHORE K., BEGUM Z., SINGH S.M. and SHIVAJI S. 2009. Bacterial diversity and bioprospecting for cold−active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny−Ålesund, Svalbard, Arctic. Current Microbiology 59: 537-547.CrossrefWeb of ScienceGoogle Scholar

  • STACKEBRANDT E. and GOEBEL B.M. 1994. Taxonomic note: A place for DNA−DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. InternationalJournal of Systematic and Evolutionary Microbiology 44: 846-849.Google Scholar

  • SUNNOTEL O. and NIGAM P. 2002. Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World Journal of Microbiology and Biotechnology 18: 835-839.CrossrefGoogle Scholar

  • TALBOT V. and BIANCHI M. 1997. Bacterial proteolytic activity in sediments of the Subantarctic Indian Ocean Sector. Deep−Sea Research II 44: 1069-1084.Google Scholar

  • TATIAN M., SAHADE R., KOWALKE J., KIVATINITZ S.C. and ESNAL G. 2002. Food availability and gut contents in the ascidian Cnemidocarpa verrucosa at Potter Cove, Antarctica. Polar Biology 25: 58-64.Google Scholar

  • TROPEANO M., CORIA S., TURJANSKI A., CICERO D., BERCOVICH A., MAC CORMACK W. and VÁZQUEZ S. 2012. Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production. Polar Research 31: 18507. Web of ScienceGoogle Scholar

  • TRUONG L.V., TUYEN H.,HELMKE E.,BINH L.T. and SCHWEDER T. 2001. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5: 35-44.Google Scholar

  • TUTINO M.L., PARRILLI E., GIAQUINTO L., DUILIO A., SANNIA G., FELLER G. and MARINO G. 2002. Secretion of alpha−amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. Journal of Bacteriology 184: 5814-5817.CrossrefGoogle Scholar

  • ULRICH A., KLIMKE G. andWIRTH S. 2007. Diversity and activity of cellulose−decomposing bacteria, isolated from a sandy and a loamy soil after long−term manure application. Microbial Ecology 55: 512-522.PubMedWeb of ScienceGoogle Scholar

  • VAN PETEGEM F., COLLINS T.,MEUWIS M.A., GERDAY C., FELLER G. and VAN BEEUMEN J. 2003. The structure of a cold−adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investgation of the active site. Journal of Biological Chemistry 278: 7531-7539.Google Scholar

  • VÁZQUEZ S.C., CORIA S.H. and MAC CORMACK W.P. 2004. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbial Research 159: 157-166.Google Scholar

  • VÁZQUEZ S.C., RUBERTO L. and MAC CORMACK W.P. 2005. Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. PolarBiology 28: 319-325.Google Scholar

  • VÁZQUEZ S.C., HERNANDEZ E. and MAC CORMACK W.P. 2008. Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96−47 strain. Revista Argentina de Microbiologia 40: 63-71.Google Scholar

  • WILLIAMS P.G. 2009. Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends in Biotechnology 27: 45-52.Web of ScienceCrossrefGoogle Scholar

  • XIONG H., SONG L., XU Y., TSOI M.Y., DOBRETSOV S. and QIAN P.Y. 2007. Characterization of proteolytic bacteria from the Aleutian deep−sea and their proteases. Journal of Industrial Micro−biology and Biotechnology 34: 63-71.Google Scholar

  • ZENG R., XIONG P. and WEN J. 2006. Characterization and gene cloning of a cold−active cellulase from a deep−sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 10: 79-82.CrossrefGoogle Scholar

  • ZHOU M.Y., CHEN X.L., ZHAO H.L., DANG H.Y., LUAN X.W., ZHANG X.Y., HE H.L., ZHOU B.C. and ZHANG Y.Z. 2009. Diversity of both the culturable protease−producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microbial Ecology 58: 582-590. Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-06-01

Citation Information: Polish Polar Research, Volume 34, Issue 3, Pages 253–267, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/popore-2013-0014.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Guo-Qiang Chen and Xiao-Ran Jiang
Current Opinion in Biotechnology, 2018, Volume 50, Page 94
Lorena M. Herrera, César X. García-Laviña, Juan J. Marizcurrena, Odile Volonterio, Rodrigo Ponce de León, and Susana Castro-Sowinski
Polar Biology, 2017, Volume 40, Number 4, Page 947

Comments (0)

Please log in or register to comment.
Log in