Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …
Volume 34, Issue 3


Distribution, genesis, and properties of Arctic soils: a case study from the Fuglebekken catchment, Spitsbergen

Wojciech Szymański
  • Corresponding author
  • Uniwersytet Jagielloński, Instytut Geografii i Gospodarki Przestrzennej, Zakład Gleboznawstwa i Geografii Gleb, ul. Gronostajowa 7, 30−387 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stefan Skiba
  • Uniwersytet Jagielloński, Instytut Geografii i Gospodarki Przestrzennej, Zakład Gleboznawstwa i Geografii Gleb, ul. Gronostajowa 7, 30−387 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bronisław Wojtuń
  • Uniwersytet Wrocławski, Katedra Ekologii, Biogeochemii i Ochrony Środowiska, ul. Kanonia 6/8, 50−328 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/popore-2013-0017


This paper presents distribution and properties of soils within the Fuglebekken catchment in neighbourhood of the Polish Polar Station in Hornsund, SW Spitsbergen (Svalbard Archipelago). The present study describes 8 representative soil profiles out of 34 profiles studied for the whole catchment. Soils of the Fuglebekken catchment show initial stage of their formation because of very slow rate of chemical and biological weathering in Arctic climate conditions. Upliftedmarine terraces of the Fuglebekken catchment are characterized by domination of Haplic Cryosolswhich are related to stony and gravelly parent material (reworked marine sediments). Such soils constitute of 17% of the studied area. Turbic Cryosols forming characteristic micro−relief occur on flat surfaces and gentle slopes. Such soils (covering 7% of the catchment) are formed from loamy parent material. Along streams Hyperskeletic Cryosols (Reductaquic) and Turbic Histic Cryosols occur. The last two soil units (constituting 11% of the catchment) are mantled by continuous and dense vegetation cover (especially mosses) due to high content of water rich in nutrients flowing from colonies of sea birds located on slopes of Ariekammen and Fugleberget. The studied soils are generally characterized by shallowoccurrence of permafrost (i.e. at 30-50 cm), high content of pebbles, sandy or sandy loam texture, and neutral or slightly alkaline reaction. Soils occurring along streams and near colonies of sea birds show higher content of nutrients (N and P) in comparison with other soils and are covered by more dense vegetation. This indicates important impact of bird guano on chemical composition of soil solution and fertility of such soils.

Keywords: Arctic; Svalbard; Cryosols; cryoturbation; permafrost

  • BEIER C., EMMETT B.A., PEŃUELAS J., SCHMIDT I.K., TIETEMA A., ESTIARTE M., GUNDERSEN P., LLORENS L., RIISS−NIELSEN T., SOWERBY A. and GORISSEN A. 2008. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Science of The Total Environment 407 (1): 692-697.CrossrefWeb of ScienceGoogle Scholar

  • BOCKHEIM J.G. and TARNOCAI C. 1998. Recognition of cryoturbation for classifying permafrost−affected soils. Geoderma 81: 281-292.CrossrefGoogle Scholar

  • BOCKHEIM J.G.,MAZHITOVA G., KIMBLE J.M. and TARNOCAI C. 2006. Controversies on the genesis and classification of permafrost−affected soils. Geoderma 137: 33-39.CrossrefGoogle Scholar

  • BRADY N.C. andWEIL R.R. 2004. The nature and properties of soils. Pearson Education, Inc., Delhi, India: 960 pp.Google Scholar

  • CANNONE N.,WAGNER D., HUBBERTEN H.W. and GUGLIELMIN M. 2008. Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma 144: 50-65.Web of ScienceCrossrefGoogle Scholar

  • CZERNY J., KIERES A., MANECKI M. and RAJCHEL J. 1993. Geological map of SW part of WedelJarlsberg Land, Spitsbergen 1:25000. Institute of Geology and Mineral Deposits, Cracow: 61 pp.Google Scholar

  • DUBIEL E. and OLECH M. 1992. Ornithocoprophilous plant communities on the southern slope ofAriekammen (Hornsund region, Spitsbergen). Landscape, Life World and Man in High Arctic. Institute of Ecology, PAS, Warszawa: 167-175.Google Scholar

  • GEE G.W. and BAUDER J.W. 1986. Particle−size analysis, In: A. Klute (ed.) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd edition. Agronomy Monograph, vol. 9. ASA−SSSA, Madison, Wisconsin: 427-445.Google Scholar

  • IUSS WORKING GROUP WRB 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103, FAO, Rome.Google Scholar

  • KABAŁA C. and ZAPART J. 2009. Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen. Polish Polar Research 30 (2): 161-178.Google Scholar

  • KABAŁA C. and ZAPART J. 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard Archipelago. Geoderma 175-176: 9-20.Web of ScienceGoogle Scholar

  • KARCZEWSKI A. , ANDRZEJEWSKI L., CHMAL H., JANIA J., KŁYSZ P., KOSTRZEWSKI A., LINDNER L., MARKS L., PĘKALA K., PULINA M., RUDOWSKI S. STANKOWSKI W., SZCZYPEK T. and WIŚNIEWSKI E. 1990. Hornsund, Spitsbergen geomorphology, 1:75 000. Uniwersytet Śląski, Katowice.Google Scholar

  • KLIMOWICZ Z. and UZIAK S. 1988. Soil−forming processes and soil properties in the Calypsostranda Region (Spitsbergen). Polish Polar Research 9 (1): 61-71.Google Scholar

  • KLIMOWICZ Z. and UZIAK S. 1996. Arctic soil properties associated with micro−relief forms in the Bellsund region (Spitsbergen). Catena 28: 135-149.CrossrefGoogle Scholar

  • KLIMOWICZ Z.,MELKE J. and UZIAK S. 1997. Peat soils in the Bellsund region, Spitsbergen. PolishPolar Research 18 (1): 25-39.Google Scholar

  • LEV A. and KING R.H. 1999. Spatial variation of soil development in a high arctic soil landscape: Truelove Lowland, Devon Island, Nunavut, Canada. Permafrost and Periglacial Processes 10: 289-307.CrossrefGoogle Scholar

  • LINDNER L., MARKS L., ROSZCZYNKO W. and SEMIL J. 1991. Age of raised marine beaches of northern Hornsund Region, South Spitsbergen. Polish Polar Research 12 (2): 161-182.Google Scholar

  • MANN D.H., SLETTEN R.S. and UGOLINI F.C. 1986. Soil development at Kongsfjord, Spitsbergen. Polar Research 4: 1-16.CrossrefGoogle Scholar

  • MARSZ A.A. and STYSZYŃSKA A. 2007. The climate of Polish Polar Station at Hornsund.Wydawnic− two Akademii Morskiej, Gdynia: 376 pp. (in Polish).Google Scholar

  • MELKE J. and CHODOROWSKI J. 2006. Formation of arctic soils in Chamberlindalen, Bellsund, Spitsbergen. Polish Polar Research 27 (2): 119-132.Google Scholar

  • MELKE J. and UZIAK S. 1989. Dynamics of moisture, redox potential and oxygen diffusion rate of some soils from Calypsostranda, Spitsbergen. Polish Polar Research 10 (1): 91-104.Google Scholar

  • MELKE J., CHODOROWSKI J. and UZIAK S. 1990. Soil formation and soil properties in the areas of Lyellstranda, Dyrstad and Logne in the region of Bellsund (West Spitsbergen). Polish Journal ofSoil Science 23 (2): 213-222.Google Scholar

  • MUNSELL SOIL COLOR CHARTS 2000. Revised Washable Edition. Munsell`® Soil Color Charts. Munsell Color Company, Gretag Macbeth, New Windsor, New York: 35 pp.Google Scholar

  • NAVAS A., LÓPEZ−MARTINEZ J., CASAS J., MACHIN J., DURAN J.J., SERRANO E., CUCHI J.A. and MINK S. 2008. Soil characteristics on varying lithological substrates in the South Shetland Is− lands, Maritime Antarctic. Geoderma 144: 123-139.CrossrefWeb of ScienceGoogle Scholar

  • NELSON D.W. and SOMMERS L.E. 1996. Total carbon, organic carbon, and organic matter. In: J.M. Bigham (ed.) Methods of Soil Analysis. Part 3. Chemical Methods - SSSA Book Series, vol. 5. SSSA and ASA, Madison, Wisconsin: 961-1010.Google Scholar

  • RICHTER D. and MATUŁA J. 2013. Leptolyngbya sieminskae sp. n. (Cyanobacteria) from Svalbard. Polish Polar Research 34 (2): 151-168.Web of ScienceGoogle Scholar

  • SCHAEFER C.E.G.R., SIMAS F.N.B., GILKES R.J., MATHISON C., COSTA L.M. and ALBUQUERQUE M.A. 2008. Micromorphology and microchemistry of selected Cryosols fromMaritime Antarctica. Geoderma 144: 104-115. CrossrefWeb of ScienceGoogle Scholar

  • SIMAS F.N.B., SCHAEFER C.E.G.R., DEMELO V.F., GUERRA M.B.B. SAUNDERS M. and GILKES R.J. 2006. Clay−sized minerals in permafrost−affected soils (Cryosols) from King George Island, Antarctica. Clays and Clay Minerals 54: 721-736.CrossrefGoogle Scholar

  • SKIBA S.,DREWNIK M. andKACPRZAK A. 2002. Soils of the western coast of Sørkappland. In:W. Ziaja and S. Skiba (eds) Sørkappland landscape structure and functioning (Spitsbergen, Svalbard). Wydawnictwo UJ, Kraków: 51-86.Google Scholar

  • SMITH P., FANG C., DAWSON J.J.C. andMONCRIEFF J.B. 2008. Impact of global warming on soil or− ganic carbon. Advances in Agronomy 97: 1-43.Web of ScienceGoogle Scholar

  • TEDROW J.C.F. 1977. Soils of the polar landscape. Rutgers University Press, New Brunswick, NJ: 638 pp.Google Scholar

  • THOMAS G.W. 1996. Soil pH and soil acidity. In: J.M. Bigham (ed.) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series, vol. 5. SSSA and ASA, Madison, Wisconsin: 475-490.Google Scholar

  • UGOLINI F.C., CORTI G. and CERTINI G. 2006. Pedogenesis in the sorted patterned ground of Devon Plateau, Devon Island, Nunavut, Canada. Geoderma 136: 87-106.CrossrefGoogle Scholar

  • VAN BREEMEN N. and FINZI A.C. 1998. Plant−soil interactions: Ecological aspects and evolutionary implications. Biogeochemistry 42: 1-19.CrossrefGoogle Scholar

  • VAN VLIET−LANOË B. 1988. The origin of patterned grounds in NW Svalbard. Permafrost. V International Conference in Trondheim. Proceedings 2: 1008-1013.Google Scholar

  • VAN VLIET−LANOË B. 1998. Frost and soils: implications for paleosols, paleoclimates and stratigraphy. Catena 34: 157-183.Google Scholar

  • WALKER T.R. 2012. Properties of selected soils from the sub−Arctic region of Labrador, Canada. Polish Polar Research 33 (3): 207-224.Web of ScienceGoogle Scholar

  • WASHBURN A.L. 1969. Weathering, frost action and patterned ground in the Mester Vig district, North East Greenland. Meddelelser om Grønland 176 (4): 303.Google Scholar

  • WASHBURN A.L. 1980. Geocryology: A survey of periglacial processes and environments. Wiley, New York: 406 pp.Google Scholar

  • WHITE D.M.,HODKINSON I.D., SEELEN S.J. and COULSON S.J. 2007. Characterization of soil carbon from a Svalbard glacier−retreat chronosequence using pyrolysis−GC/MS analysis. Journal of An−alytical and Applied Pyrolysis 78: 70-75.Google Scholar

  • WHITE D.M., GARLAND D.S., DAI X. and PING C.−L. 2002. Fingerprinting soil organic matter in the arctic to help predict CO2 flux. Cold Regions Science and Technology 35: 185-194.Google Scholar

  • WHITE D.M.,GARLAND D.S., PING C.−L. andMICHAELSON G. 2004. Characterizing soil organic matter quality in arctic soil by cover type and depth. Cold Regions Science and Technology 38: 63-73.CrossrefGoogle Scholar

  • ZIAJA W. 2002. Changes in the landscape structure of Sørkappland. In: W. Ziaja and S. Skiba (eds) Sørkappland landscape structure and functioning (Spitsbergen, Svalbard). Wydawnictwo UJ, Kraków: 18-50. Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-06-01

Citation Information: Polish Polar Research, Volume 34, Issue 3, Pages 289–304, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/popore-2013-0017.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Daniel Kępski, Bartłomiej Luks, Krzysztof Migała, Tomasz Wawrzyniak, Sebastian Westermann, and Bronisław Wojtuń
Remote Sensing, 2017, Volume 9, Number 7, Page 733
Grzegorz Skrzypek, Bronisław Wojtuń, Dorota Richter, Dariusz Jakubas, Katarzyna Wojczulanis-Jakubas, Aleksandra Samecka-Cymerman, and Robert Bradley
PLOS ONE, 2015, Volume 10, Number 9, Page e0136536
Mariana Durigan, Maurício Cherubin, Plínio de Camargo, Joice Ferreira, Erika Berenguer, Toby Gardner, Jos Barlow, Carlos Dias, Diana Signor, Raimundo Junior, and Carlos Cerri
Sustainability, 2017, Volume 9, Number 3, Page 379
Wojciech Szymański, Janusz Siwek, Joanna Waścińska, and Bronisław Wojtuń
Polish Polar Research, 2016, Volume 37, Number 3

Comments (0)

Please log in or register to comment.
Log in