Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 34, Issue 3 (Jun 2013)

Post−surge geometry and thermal structure of Hørbyebreen, central Spitsbergen

Jakub Małecki
  • Corresponding author
  • Wydział Nauk Geograficznych i Geologicznych, Uniwersytet im. Adama Mickiewicza, ul. Dzięgielowa 27, 61−680, Poznań, Poland
  • Department of Arctic Geology, University Centre in Svalbard, 9171, Longyearbyen, Norway
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samuel Faucherre
  • Corresponding author
  • Centre for Permafrost, University of Copenhagen,Øster Voldgade 10, DK 1350, Copenhagen, Denmark
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mateusz C. Strzelecki
  • Corresponding author
  • Department of Arctic Geology, University Centre in Svalbard, 9171, Longyearbyen, Norway
  • Department of Geography, Durham University, South Road, DH1 3LE, Durham, UK
  • Zakład Geomorfologii, Uniwersytet Wrocławski, pl. Uniwersytecki 1, 50−137 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/popore-2013-0019

Abstract

Hørbyebreen surged in the 19th or early 20th century, as suggested by geomorphological evidences and looped medial moraines. In this study, we investigate its wide−spread geometry changes and geodetic mass balance with 1960 contour lines, 1990 and 2009 digital elevation models, in order to define the present−day state of the glacier. We also study its thermal structure from ground−penetrating radar data. Little is known about the glacier behaviour in the first part of the 20th century, but from its surge maximum until 1960 it has been retreating and losing its area. In the period 1960-1990, fast frontal thinning (2-3ma−1) and a slow mass build−up in the higher zones (~0.15 m a−1) have been noted, resulting in generally negative mass balance (−0.40 ± 0.07 m w. eq. a−1). In the last studied period 1990-2009, the glacier showed an acceleration of mass loss (−0.64 m ± 0.07 w. eq. a−1) and no build−up was observed anymore. We conclude that Hørbyebreen system under present climate will not surge anymore and relate this behaviour to a considerable increase in summer temperature on Svalbard after 1990. Radar soundings indicate that the studied glacial system is polythermal, with temperate ice below 100-130 m depth. It has therefore not (or not yet) switched to cold−bedded, as has been suggested in previous works for some small Svalbard surge−type glaciers in a negative mass balance mode.

Keywords: Arctic; Svalbard; glacier surge; glacier geometry changes

  • BARRAND N.E., JAMES T.D. andMURRAY T. 2010. Spatio−temporal variability in elevation changes of two high−Arctic valley glaciers. Journal of Glaciology 56 (199): 771-780.Google Scholar

  • BÆLUM K. and BENN D.I. 2011. Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar. The Cryosphere 5: 139-149.Google Scholar

  • BENN D.I., KRISTENSEN L. and GULLEY J.D. 2009. Surge propagation constrained by a persistent subglacial conduit, Bakaninbreen−Paulabreen, Svalbard. Annals of Glaciology 50 (52): 81-86.Google Scholar

  • BJÖRNSSON H., GJESSING Y., HAMRAN S.−E., HAGEN J.O., LIESTØL O., PALSSON F. and ERLINGSSON B. 1996. The thermal regime of sub−polar glaciers mapped by multi−frequency radio−echo sounding. Journal of Glaciology 42 (140): 23-32.Google Scholar

  • DALLMANN W.K., PIPEJOHN K. and BLOMEIER D. 2004. Geological map of Billefjorden, CentralSpitsbergen, Svalbard, with geological excursion guide. 1 : 50,000. Norsk Polarinstitutt Tematkart, No 36.Google Scholar

  • DOLGOUSHIN I.O. and OSIPOVA G.B. 1975. Glacier surges and the problem of their forecasting. International Association of Hydrological Sciences Publication 104 (Symposium at Moscow 1971 - Snow and Ice): 292-304.Google Scholar

  • DOWDESWELL J.A. and BENHAM T.J. 2003. A surge of Perseibreen, Svalbard, examined using aerial photography and ASTER high resolution satellite imagery. Polar Research 22 (2): 373-383.CrossrefGoogle Scholar

  • DOWDESWELL J.A., HAMILTON G.A and HAGEN J.O. 1991. The duration of the active phase on surge−type glaciers: contrasts between Svalbard and other regions. Journal of Glaciology 37 (127): 388-400.Google Scholar

  • DOWDESWELL J.A., HODGKINS R., NUTTALL A.M., HAGEN J.O. and HAMILTON G.S. 1995. Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic. Geophysical Research Letters 22 (21): 2909-2912.Google Scholar

  • DYURGEROV M.B.,AIZIN V.B. and BUYNITSKIY A.B. 1985. Mass accumulation in the accumulation area of Medvezhiy Glacier during its quiesence periods. Materialy Glyatsiologicheskikh Issledovaniy 54: 131-135 (in Russian).Google Scholar

  • EISEN O., HARRISON W.D. and RAYMOND C.F. 2001. The surges of Variegated Glacier, Alaska, U.S.A., and their connection to climate andmass balance. Journal of Glaciology 47 (158): 351-358.Google Scholar

  • ETZELMÜLLER B., ØDEGÅRD R.S., VATNE G.,MYSTERUD R.S., TONNING T. and SOLLID J.L. 2000. Glacier characteristics and sediment transfer system of Longyearbreen and Larsbreen, western Spitsbergen. Norsk Geografisk Tidskrift 54: 157-168.Google Scholar

  • EVANS D.J.A. and REA B.R. 2003. Surging glacier landsystem. In: D.J.A. Evans (ed.) GlacialLandsystems. Arnold, London: 259-288.Google Scholar

  • EVANS D.J.A., STRZELECKI M.C., MILLEDGE D.G. and ORTON C. 2012. Hørbyebreen polythermal glacial landsystem, Svalbard. Jorunal of Maps 8 (2): 146-156.Google Scholar

  • FOWLER A.C., MURRAY T. and NG F.S.L. 2001. Thermally controlled glacier surging. Journal ofGlaciology 47 (159): 527-538.Google Scholar

  • FØRLAND E.J. and HANSSEN−BAUER I. 2003. Past and future climate variations in the Norwegian Arctic: overview and novel analyses. Polar Research 22: 113-124.CrossrefGoogle Scholar

  • GIBAS J., RACHLEWICZ G. and SZCZUCIŃSKI W. 2005. Application of DC resistivity soundings and geomorphological surveys in studies of modern Arctic glacier marginal zones, Petuniabukta, Spitsbergen. Polish Polar Research 26 (4): 239-258.Google Scholar

  • GOKHMAN V.V., TROITSKIY L.C. and KOTLYAKOV V.G. 1982. Hydrothermal regime of Bertil Glacier on Spitsbergen and its water−supply role. Materialy glyatsiologicheskikh issledovaniy 45: 154-159 (in Russian).Google Scholar

  • HAGEN J.O. 1987. Glacier surge at Usherbreen, Svalbard. Polar Research 5 (2): 239-252.CrossrefGoogle Scholar

  • HAMILTON G.S. 1992. Investigations of surge−type glaciers in Svalbard. PhD thesis, University of Cambridge: 275 pp.Google Scholar

  • HAMILTON G.S. and DOWDESWELL J.A. 1996. Controls on glacier surging in Svalbard. Journal ofGlaciology 42 (140): 157-168.Google Scholar

  • HODGKINS R., HAGEN J.O. and HAMRAN S.−E. 1999. 20th century mass balance and thermal regime change at Scott Turnerbreen, Svalbard. Annals of Glaciology 28 (1): 216-220.CrossrefGoogle Scholar

  • HODGKINS R., FOX A. and NUTTALL A.−M. 2007. Geometry change between 1990 and 2003 at Finsterwalderbreen, a Svalbard surge−type glacier, from GPS profiling. Annals of Glaciology 46: 1-5.Google Scholar

  • JAMES T.D.,MURRAY T., BARRAND N.E., SYKES H.J., FOX A.J. andKING M.A. 2012. Observations of enhanced thinning in the upper reaches of Svalbard glaciers. The Cryosphere 6: 1369-1381.Google Scholar

  • JANIA J.,MOCHNACKI D. and GĄDEK B. 1996. The thermal structure of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard. Polar Research 15 (1): 53-66.CrossrefGoogle Scholar

  • JISKOOT H., BOYLE P. and MURRAY T. 1998. The incidence of glacier surging in Svalbard: evidence from multivariate statistics. Computers and Geosciences 24 (4): 387-399. Google Scholar

  • KAMB B., RAYMOND C.F.,HARRISON W.D., ENGELHARDT H., ECHELMEYER K.A.,HUMPHREY N., BRUGMAN M.M. and PFEFFER T. 1985. Glacier surge mechanism: 1982-1983 surge of Variegated Glacier, Alaska. Science 227 (4686): 267-284.Google Scholar

  • KARCZEWSKI A. 1989. The development of the marginal zone of the Hørbyebreen, Petuniabukta, central Spitsbergen. Polish Polar Research 10 (3): 371-377.Google Scholar

  • KOHLER J., JAMES T.D., MURRAY T., NUTH C., BRANDT O., BARRAND N.E., AAS H.F. and LUCKMAN A. 2007. Acceleration in thinning rate on western Svalbard glaciers. Geophysical Research Letters 34: L18502.CrossrefGoogle Scholar

  • LEFAUCONNIER B. and HAGEN J.O. 1991. Surging and calving glaciers in eastern Svalbard. NorskPolarinstitutt Meddelelser 116: 132 pp.Google Scholar

  • LEMKE P., REN J., ALLEY R.B.,ALLISON I., CARRASCO J., FLATO G., FUJII Y.,KASER G.,MOTE P., THOMAS R.H. and ZHANG T. 2007. Observations: changes in snow, ice and frozen ground. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 337-383.Google Scholar

  • LIESTØL O. 1969. Glacier surges in west Spitsbergen. Canadian Journal of Earth Sciences 6 (4), Part 2: 895-897.CrossrefGoogle Scholar

  • LIESTØL O. 1993. Glaciers of Europe - glaciers of Svalbard, Norway. In: R.S. Williams Jr. and J.G. Ferrigno (eds). Satellite image atlas of glaciers of the world. U.S. Geological Survey ProfesionalPaper 1386: E127-E151.Google Scholar

  • MACHÍO F., LAPAZARAN J., DOLNICKI P., PETLICKI M., GŁOWACKI P. and NAVARRO F. 2007. Preliminary results from radio−echo sounding at Ariebreen, Hornsund, Spitsbergen. In: The Dynamics and Mass Budget of Arctic Glaciers. Extended abstracts. Workshop and GLACIODYN(IPY) meeting, 15-18 January 2007, Pontresina, Switzerland. Institute for Marine and Atmospheric Research, Utrecht University, the Netherlands: 64-66.Google Scholar

  • MAŁECKI J. 2013. The present−day state of Svenbreen (Svalbard) and changes of its physical proper−ties after the termination of the Little Ice Age. PhD thesis. Adam Mickiewicz University, Poznań: 166 pp.Google Scholar

  • MEIER M.F. and POST A. 1969. What are glacier surges? Canadian Journal of Earth Sciences 6 (4), Part 2: 807-817.CrossrefGoogle Scholar

  • MEIER M.F., DYURGEROV M.B., RICK U.K., O'NEEL S., PFEFFER W.T., ANDERSON R.S., ANDERSON S.P. and GLAZOVSKY A.F. 2007. Glaciers dominate eustatic sea−level rise in the 21st century. Sci−ence 317: 1064-1067.Google Scholar

  • MELVOLD K. and HAGEN J.O. 1998. Evolution of a surge−type glacier in its quiescent phase: Kongsvegen, Spitsbergen, 1964-95. Journal of Glaciology 44 (147): 394-404.Google Scholar

  • MOHOLDT G., NUTH C., HAGEN J.O. and KOHLER J. 2010. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment 114 (11): 2756-2767.Google Scholar

  • MURRAY T.,DOWDESWELL J.A.,DREWRY D.J. and FREARSON I. 1998. Geometric evolution and ice dynamics during a surge of Bakaninbreen, Svalbard. Journal of Glaciology 44 (147): 263-272.Google Scholar

  • NAWROT A.P. 2011. Operation of the small glaciated catchment geosystem (Arie, Spitsbergen). PhD thesis, Adam Mickiewicz University, Poznań: 150 pp.Google Scholar

  • NORDLI P.Ø. and KOHLER J. 2003. The early 20th century warming. Daily observations at Green Harbour, Grønfjorden, Spitsbergen. DNMI KLIMA Rapp. 12/03. Norwegian Meteorological Institute, Oslo: 20 pp.Google Scholar

  • NUTH C. and KÄÄB A. 2011. Co−registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5: 271-290.Google Scholar

  • NUTH C., KOHLER J., AAS H. F., BRANDT O. and HAGEN J. O. 2007. Glacier geometry and elevation changes on Svalbard (1936-90): a baseline dataset. Annals of Glaciology 46: 106-116. Google Scholar

  • NUTH C., MOHOLDT G., KOHLER J., HAGEN J. O. and KÄÄB A. 2010. Svalbard glacier elevation changes and contribution to sea level rise. Journal of Geophysical Research 115: F01008.CrossrefGoogle Scholar

  • ØDEGÅRD R.S., HAMRAN S.E., BØ P.H., ETZELMÜLLER B., VATNE G. and SOLLID L. 1992. Thermal regime of a valley glacier, Erikbreen, northern Spitsbergen. Polar Research 11 (2): 69-79.CrossrefGoogle Scholar

  • PÄLLI A., MOORE J.C., JANIA J., KOLONDRA L. and GŁOWACKI P. 2003. The drainage pattern of Hansbreen and Werenskioldbreen, two polythermal glaciers in Svalbard. Polar Research 22 (2): 355-371.CrossrefGoogle Scholar

  • RACHLEWICZ G. 2009a. Contemporary sediment fluxes and relief changes in high Arctic glacierizedvalley systems (Billefjorden, Central Spitsbergen). Seria geografia nr 87. Adam Mickiewicz University Press, Poznań: 203 pp.Google Scholar

  • RACHLEWICZ G. 2009b. River floods in glacier−covered catchments of the high Arctic: Billefjorden− Wijdefjorden, Svalbard. Norsk Geografisk Tidskrift 63 (2), 115-122.Google Scholar

  • RACHLEWICZ G. and STYSZYŃSKA A. 2007. Comparison of the course of air temperature in Petuniabukta and Svalbard−Lufthavn (Isfjord, Spitsbergen) in the years 2001-2003. ProblemyKlimatologii Polarnej 17: 121-134 (in Polish).Google Scholar

  • RACHLEWICZ G., SZCZUCIŃSKI W. and EWERTOWSKI M. 2007. Post−“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Polish Polar Research 28 (3): 159-186.Google Scholar

  • RAYMOND C. 1987. How do glaciers surge? A review. Journal of Geophysical Research 92 (B9): 9121-9134.CrossrefGoogle Scholar

  • SCHYTT V. 1969. Some comments on glacier surges in eastern Svalbard. Canadian Journal of EarthSciences 6 (4), Part 2: 867-873.CrossrefGoogle Scholar

  • SLATER G. 1925. Observations on the Nordenskiöld and neighboring glaciers of Spitsbergen, 1921.Journal of Geology 33 (4): 408-446.Google Scholar

  • SOLHEIM A. 1991. The depositional environment of surging sub−polar tidewater glaciers: a case study of the morphology, sedimentation and sediment properties in a surge−affected marine basin outside Nordaustlandet, northern Barents Sea. Norsk Polarinstitutt Skrifter 194: SUND M. and EIKEN T. 2004. Quiescent−phase dynamics and surge history of a polythermal glacier: Hessbreen, Svalbard. Journal of Glaciology 50: 547-555.Google Scholar

  • ZHURAVLEV A.B., MACHERET Yu.Ya. and BOBROVA L.I. 1983. Radio−echo sounding investigations on a polar glacier with winter discharge. Materialy glyatsiologicheskikh issledovaniy 46: 143-149 (in Russian). Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-06-01


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/popore-2013-0019.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Jakub Małecki
Geografiska Annaler: Series A, Physical Geography, 2015, Volume 97, Number 4, Page 809
[3]
Mateusz C. Strzelecki, Antony J. Long, and Jerry M. Lloyd
Permafrost and Periglacial Processes, 2017, Volume 28, Number 1, Page 4
[4]
Ólafur Ingólfsson, Ívar Örn Benediktsson, Anders Schomacker, Kurt H. Kjær, Skafti Brynjólfsson, Sverrir A. Jónsson, Niels Jákup Korsgaard, and Mark D. Johnson
Earth-Science Reviews, 2016, Volume 152, Page 37
[7]
Marek Ewertowski
Geografiska Annaler: Series A, Physical Geography, 2014, Volume 96, Number 3, Page 265

Comments (0)

Please log in or register to comment.
Log in