Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 34, Issue 3 (Jun 2013)

Distinguishing between two Antarctic species of Eocene Palaeeudyptes penguins: a statistical approach using tarsometatarsi

Piotr Jadwiszczak
  • Corresponding author
  • Instytut Biologii, Uniwersytet w Białymstoku, ul. Świerkowa 20B, 15−950 Białystok, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carolina Acosta Hospitaleche
  • Corresponding author
  • División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/popore-2013-0020

Abstract

Defining species boundaries, due to morphological variation, often represents a significant challenge in paleozoology. In this paper we report results from multi− and univariate data analyses, such as enhanced clustering techniques, principal coordinates or− dination method, kernel density estimations and finite mixture model analyses, revealing some morphometric patterns within the Eocene Antarctic representatives of Palaeeudyptes penguins. These large−sized birds were represented by two species, P. gunnari and P. klekowskii, known mainly from numerous isolated bones. Investigations focused on tarso− metatarsi, crucial bones in paleontology of early penguins, resulted in a probability−based framework allowing for the “fuzzy” partitioning the studied specimens into two taxa with partly overlapping size distributions. Such a number of species was supported by outcomes from both multi− and univariate studies. In our opinion, more reliance should be placed on the quantitative analysis of form when distinguishing between species within the Antarctic Palaeeudyptes.

Keywords: Antarctic; La Meseta Formation; Paleogene; Sphenisciformes; statistics; systematics

  • ACOSTA HOSPITALECHE C. 2013. Palaeeudyptes klekowskii Myrcha, Tatur y del Valle, 1990: descripción e importancia del más completo esqueleto de pingüino del Eoceno superior de Antártida. 27° Jornadas Argentinas de Paleontología de Vertebrados (La Rioja, Argentina). Actas: 14.Google Scholar

  • ACOSTA HOSPITALECHE C. and REGUERO M. 2010. First articulated skeleton of Palaeeudyptesgunnari from the late Eocene of Seymour (= Marambio) Island (Antarctica). Antarctic Science 22: 289-298.Web of ScienceCrossrefGoogle Scholar

  • ACOSTA HOSPITALECHE C. and TAMBUSSI C. 2008. South American fossil penguins: a systematic update. Oryctos 7: 109-127.Google Scholar

  • ASHMAN K.M., BIRD C.M. and ZEPF S.E. 1994. Detecting bimodality in astronomical datasets. Astronomical Journal 108: 2348.CrossrefGoogle Scholar

  • BENAGLIA T., CHAUVEAU D., HUNTER D.R. and YOUNG D. 2009. Mixtools: An R package for analyzing finite mixture models. Journal of Statistical Software 32: 1-29.Google Scholar

  • BRODKORB P. 1963. Catalogue of fossil birds. Bulletin of the Florida State Museum 7: 179-293.Google Scholar

  • CLARKE J.A., OLIVERO E.B. and PUERTA P. 2003. Description of the earliest fossil penguin from South America and first Paleogene vertebrate locality of Tierra del Fuego, Argentina. AmericanMuseum Novitates 3423: 1-18.Google Scholar

  • CLARKE J.A.,KSEPKA D.T., STUCCHI M.,URBINA M.,GIANNINI N.,BERTELLI S.,NARVÁEZ Y. and BOYD C.A. 2007. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy ofSciences (PNAS) 104: 11545-11550.Web of ScienceGoogle Scholar

  • CLARKE J.A., KSEPKA D.T., SALAS−GISMONDI R., ALTAMIRANO A.J., SHAWKEY M.D., D’ALBA L., VINTHER J., DEVRIES T.J. and BABY P. 2010. Fossil Evidence for Evolution of the Shape and Color of Penguin Feathers. Science 330: 954-957.Web of ScienceGoogle Scholar

  • ELLIOT D.H. and TRAUTMAN T.A. 1982. Lower Tertiary strata on Seymour Island, Antarctic Peninsula. In: C. Craddock (ed.) Antarctic Geoscience. The University of Wisconsin Press, Madison: 287-297.Google Scholar

  • FORDYCE R.E. and THOMAS D.B. 2011. Kaiika maxwelli, a new early Eocene archaic penguin (Sphenisciformes, Aves) from Waihao Valley, South Canterbury, New Zealand. New ZealandJournal of Geology and Geophysics 54: 43-51.Web of ScienceGoogle Scholar

  • GOWER J.C. and ROSS G.J.S. 1969. Minimum Spanning Trees and Single Linkage Cluster Analysis. Journal of the Royal Statistical Society, Series C (Applied Statistics) 18: 54-64. Google Scholar

  • HILL T. and LEWICKI P. 2006. Statistics: methods and applications: a comprehensive reference forscience, industry, and data mining. StatSoft, Inc., Tulsa: 832 pp.Google Scholar

  • HUXLEY T.H. 1859. On a fossil bird and a fossil cetacean from New Zealand. Quarterly Journal ofthe Geological Society of London 15: 670-677.Google Scholar

  • JADWISZCZAK P. 2006. Eocene penguins of Seymour Island, Antarctica: Taxonomy. Polish PolarResearch 27: 3-62.Google Scholar

  • JADWISZCZAK P. 2009. Penguin past: The current state of knowledge. Polish Polar Research 30: 3-28.Google Scholar

  • JADWISZCZAK P. 2012. Partial limb skeleton of a “giant penguin” Anthropornis from the Eocene of Antarctic Peninsula. Polish Polar Research 33: 259-274.Web of ScienceGoogle Scholar

  • JADWISZCZAK P. 2013. Taxonomic diversity of Eocene Antarctic penguins: a changing picture. In: M.J. Hambrey, P.F. Barker, P.J. Barrett, V. Bowman, B. Davies, J.L. Smellie andM. Tranter (eds) Antarctic Palaeoenvironments and Earth−Surface Processes. Geological Society (London), Special Publications 381. First published online June 25, 2013, http://dx.doi.org/10.1144/SP381.7.CrossrefGoogle Scholar

  • JADWISZCZAK P. and MÖRS T. 2011. Aspects of diversity in early Antarctic Penguins. ActaPalaeontologica Polonica 56: 269-277.CrossrefGoogle Scholar

  • KOMÁREK A. 2009. A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval−censored data. ComputationalStatistics and Data Analysis 53: 3932-3947.Google Scholar

  • KSEPKA D.T., BERTELLI S. and GIANNINI N.P. 2006. The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics 22: 412-441.CrossrefGoogle Scholar

  • KSEPKA D.T., FORDYCE R.E., ANDO T. and JONES C.M. 2012. New fossil penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. Journal ofVertebrate Paleontology 32: 235-254.Web of ScienceGoogle Scholar

  • LIVEZEY B.C. 1989. Morphometric patterns in Recent and fossil penguins (Aves, Sphenisciformes). Journal of Zoology (London) 219: 269-307.Google Scholar

  • MAECHLER M., ROUSSEEUW P., STRUYF A., HUBERT M. and HORNIK K. 2013. Cluster: Cluster analysis basics and extensions. R package (version 1.14.4) available from http://cran.r−project.org/web/packages/cluster.Google Scholar

  • MARENSSI S.A. 2006. Eustatically controlled sedimentation recorded by Eocene strata of the James Ross Basin, Antarctica. In: J.E. Francis, D. Pirrie and J.A. Crame (eds) Cretaceous-Tertiary High−Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society, LondonSpecial Publications 258: 125-133.Google Scholar

  • MCLACHLAN G. andKRISHNAN T. 2008. TheEM Algorithm and Extensions. 2nd edition. John Wiley & Sons, Inc., Hoboken: 400 pp.Google Scholar

  • MILLIGAN G.W. and COOPER M.C. 1988. A study of standardization of variables in cluster analysis. Journal of Classification 5: 181-204.CrossrefGoogle Scholar

  • MYRCHA A., JADWISZCZAK P., TAMBUSSI C.P., NORIEGA J.I., GAŹDZICKI A., TATUR A. and DEL VALLE R. 2002. Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Polish Polar Research 23: 5-46.Google Scholar

  • MYRCHA A., TATUR A. and DEL VALLE R.A. 1990. A new species of fossil penguin from Seymour Island, West Antarctica. Alcheringa 14: 195-205.CrossrefGoogle Scholar

  • PARADIS E., CLAUDE J. and STRIMMER K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.CrossrefGoogle Scholar

  • PARK T. and FITZGERALD E.M.G. 2012. A review of Australian fossil penguins (Aves: Sphenisciformes). Memoirs of Museum Victoria 69: 309-325.Google Scholar

  • PORĘBSKI S.J. 2000. Shelf−valley compound fill produced by fault subsidence and eustatic sea level changes, Eocene La Meseta Formation, Seymour Island, Antarctica. Geology 28: 147-150.CrossrefGoogle Scholar

  • RCORE TEAM 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R−project.org. Google Scholar

  • SALLABERRY M.A., YURY−YÁÑEZ R.E., OTERO R.A., SOTO−ACUÑA S. and TORRES T. 2010. Eocene birds from the western margin of southernmost South America. Journal of Paleontology 84: 1061-1070.CrossrefGoogle Scholar

  • SIMPSON G.G. 1971. Review of fossil penguins from Seymour Island. Proceedings of the Royal Society of London B 178: 357-387.Google Scholar

  • SLACK K.E., JONES C.M., ANDO T., HARRISON G.L., FORDYCE R.E., ARNASON U. and PENNY D. 2006. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. MolecularBiology and Evolution 23: 1144-1155.Google Scholar

  • SUZUKI R. and SHIMODAIRA H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540-1542.CrossrefGoogle Scholar

  • TAMBUSSI C.P., ACOSTA HOSPITALECHE C.I., REGUERO M.A. and MARENSSI S.A. 2006. Late Eocene penguins from West Antarctica: systematics and biostratigraphy. In: J.E. Francis, D. Pirrie and J.A. Crame (eds) Cretaceous-Tertiary High−Latitude Palaeoenvironments, JamesRoss Basin, Antarctica. Geological Society, London, Special Publications 258: 145-161.Google Scholar

  • TAMBUSSI C.P.,REGUERO M.A.,MARENSSI S.A. and SANTILLANA S.N. 2005. Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the Late Paleocene of Antarctica. Geobios 38: 667-675.CrossrefGoogle Scholar

  • TATUR A., KRAJEWSKI K.P. and DEL VALLE R.A. 2011. The facies and biota of the oldest exposed strata of the Eocene La Meseta Formation (Seymour Island, Antarctica). Geological Quarterly 55: 345-360.Google Scholar

  • WIMAN C. 1905. Über die alttertiären Vertebraten der Seymourinsel. Wissenschaftliche Ergebnisseder Schwedischen Südpolar−Expedition 1901-1903 3: 1-37. Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-06-01


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/popore-2013-0020.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[4]
Carolina Acosta Hospitaleche and Eduardo Olivero
Alcheringa: An Australasian Journal of Palaeontology, 2016, Volume 40, Number 3, Page 373
[5]
Martín F. Chávez-Hoffmeister
Ameghiniana, 2014, Volume 51, Number 3, Page 159

Comments (0)

Please log in or register to comment.
Log in