Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 35, Issue 1 (Mar 2014)

Nannofossils, foraminifera and microforaminiferal linings in the Cenozoic diamictites of Cape Lamb, Vega Island, Antarctica

Andrea Concheyro
  • Corresponding author
  • IDEAN – Instituto de Estudios Andinos “Don Pablo Groeber”. Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón II. Ciudad Universitaria. CP 1428. Buenos Aires, Argentina. / Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. / Instituto Antártico Argentino, Balcarce 290, CP C1064AAF, Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Caramés
  • Corresponding author
  • IDEAN – Instituto de Estudios Andinos “Don Pablo Groeber”. Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón II. Ciudad Universitaria. CP 1428. Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cecilia R. Amenábar
  • Corresponding author
  • IDEAN – Instituto de Estudios Andinos “Don Pablo Groeber”. Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón II. Ciudad Universitaria. CP 1428. Buenos Aires, Argentina. / Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. / Instituto Antártico Argentino, Balcarce 290, CP C1064AAF, Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Lescano
  • Corresponding author
  • IDEAN – Instituto de Estudios Andinos “Don Pablo Groeber”. Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón II. Ciudad Universitaria. CP 1428. Buenos Aires, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-04 | DOI: https://doi.org/10.2478/popore-2014-0003

Abstract

Micropaleontological and palynological samples from three Cenozoic diamictites at Cape Lamb, Vega Island, James Ross Basin were analysed. Fossiliferous samples yielded reworked and autochthonous assemblages of Mesozoic calcareous nanno− fossils, impoverished Cretaceous foraminifera together with Neogene species, as well as Late Cretaceous dinoflagellate cysts, pollen, spores and abundant Cenozoic micro− foraminiferal linings. The recovered nannoflora indicates Early Cretaceous (Hauteri− vian-Albian) and Late Cretaceous (Santonian-Early Campanian) ages, suggesting an in− tensive reworking of marine sediments. The presence of the Early Cretaceous species Nannoconus circularis Deres et Acheriteguy in the diamictite represents its first record for the James Ross Basin. The scarce foraminiferal fauna includes Pullenia jarvisi Cushman, which indicates reworking from lower Maastrichtian-lower Paleocene sediments, and also the Neogene autochthonous Trochammina sp. aff. T. intermedia. The in− ner−organic layer observed inside this specimen appears to be identical to microfora− miniferal linings recovered from the same sample. Palynomorphs found in the studied samples suggest erosion from the underlying Snow Hill Island and the Lopez de Bertodano Formation beds (upper Campanian-upper Maastrichtian). These recovered assemblages indicate either different periods of deposition or reworking from diverse sources during Cenozoic glaciation, originating in James Ross Island and the Antarctic Peninsula with the influence of local sediment sources.

Keywords: Antarctica; James Ross Basin; Cenozoic diamictites; calcareous nanno− fossils; Foraminifera; microforaminiferal linings

References

  • ADAMONIS S., CARAMÉS A., AMENÁBAR C.R., BALLENT S., CONCHEYRO A., LIRIO J.M. and MACKERN A. 2010. Microfósiles calcáreos y palinomorfos de la Diamictita Punta Ekelöf, Mioceno-Plioceno, Isla James Ross, Antártida. 10° Congreso Argentino de Paleontología y Bioestratigrafía y 7° Congreso Latinoamericano de Paleontología, La Plata, Argentina. Sim− posio VI, Microfósiles del Mesozoico y Cenozoico de América del Sur y Antártida. Nuevas aplicaciones y problemática asociadas: 85-86.Google Scholar

  • ANDERSSON J.G. 1906. On the Geology of Graham Land. Bulletin of the Geological Institution, Uni− versity of Upsala 7: 19-71.Google Scholar

  • ARAI M. and KOUTSOUKOS E.M. 1998. Palynoforaminifera (foraminiferal organic linings and allied material): a new tool for petroleum exploration. American Association of Petroleum Geologists. AAPG International Conference and Exhibition. Abstracts 82: 10.Google Scholar

  • BASOV I.A. andKRASHENINNIKOV V.A. 1983. Benthic foraminifers in Mesozoic and Cenozoic sedi− ments of the Southwestern Atlantic as an indicator of paleoenvironment, Deep Sea Drilling Pro− ject Leg 71. Initial Reports of the Deep Sea Drilling Project 71: 739-787.Google Scholar

  • BERTELS−PSOTKA A., CONCHEYRO A. and SALANI F.M. 2001. Las Diamictitas de cabo Hamilton, isla James Ross, Antártida. Caracterización estratigráfica, sus microfósiles. 4° Congreso de Geología y Minería de la Sociedad Cubana de Geología. La Habana, Cuba. CD−ROM.Google Scholar

  • BIRKENMAJER K. and ŁUCZKOWSKA E. 1987. Foraminiferal evidence for a Lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica 90: 81-123.Google Scholar

  • BLACK M. and BARNES B. 1959. The structure of coccoliths from the English Chalk. Geological Magazine 96: 321-328.CrossrefGoogle Scholar

  • BOWN P. and COOPER M.K. 1989. New calcareous nannofossils from the Jurassic. Journal of Micropalaeontology 8: 91-96.CrossrefGoogle Scholar

  • BOWN P. and YOUNG J.R. 1998. Techniques. In: P. Bown (ed.) Calcareous Nannofossil Biostrati− graphy. Kluwer Academic Press, Dordrecht: 16-28.Google Scholar

  • BROTZEN F. 1948. The Swedish Paleocene and its foraminiferal fauna. Årsbok Sveriges Geologiska Undersökning 42: 1-140.Google Scholar

  • BUKRY D. 1973. Phytoplankton stratigraphy, Central Pacific Ocean, Deep Sea Drilling Project Leg 17. Initial Reports of the Deep Sea Drilling Project 17: 871-889.Google Scholar

  • CARAMÉS A. and CONCHEYRO A. 2013. Late Cenozoic Foraminifera from diamictites of Cape Lamb, Vega Island, Antarctic Peninsula. Ameghiniana 50: 114-135.CrossrefGoogle Scholar

  • CARAMÉS A., AMENÁBAR C.R., Di PASQUO M., ADAMONIS S., LIRIO J.M. and CONCHEYRO A. 2008. Foraminíferos y palinomorfos de la “Diamictita Cabo Lamb”, Plioceno superior, isla Vega, Península Antártica. 17° Congreso Geológico Argentino. Jujuy, Argentina, Actas: 992-993.Google Scholar

  • CONCHEYRO A. 1995. Nanofósiles calcáreos del Cretácico Superior y Paleógeno de Patagonia, Ar− gentina. Tesis Doctoral. Facultad Ciencias Exactas y Naturales. Universidad de Buenos Aires, Argentina. Tomo I: 162 pp. Tomo II: 159 pp. (Unpublished).Google Scholar

  • CONCHEYRO A. 2002. Upper Jurassic and Cretaceous calcareous nannofossils from James Ross Is− land, Snow Hill Island and Antartic Peninsula. Journal of Nannoplankton Research 24: 85.Google Scholar

  • CONCHEYRO A. 2004. Mesozoic Calcareous Nannofossils From Larsen Basin, Southern Antarctic Peninsula. International Symposium on the Geology and Geophysics of the Southernmost An− des, the Scotia Arc and the Antarctic Peninsula. Bolletino di Geofisica teorica ed applicata 45: 255-257.Google Scholar

  • CONCHEYRO A. and ANGELOZZI G. 2002. Nanofósiles Calcáreos. In: M. Haller (ed.) Geología y Recursos Naturales de la Provincia de Santa Cruz. Relatorio del 15° Congreso Geológico Argentino, Parte II: Paleontología. El Calafate, Argentina: 519-531.Google Scholar

  • CONCHEYRO A. and SCASSO R.A. 1999. Nanofósiles calcáreos de la Formación Ameghino (Jurásico tardío), Península Antártica. 14° Congreso Geológico Argentino. Salta, Argentina, Actas 1: 47.Google Scholar

  • CONCHEYRO A., ROBLES HURTADO G. and OLIVERO E. 1995. Sedimentology and calcareous nannofossils from the Upper Cretaceous-Paleocene of James Ross Island Area, Antarctica. 7° International Symposium on Antarctic Earth Sciences. Siena, Italia, Abstracts: 88.Google Scholar

  • CONCHEYRO A., GENNARI F., ROBLES HURTADO G. and MORLOTTI E. 1997. Microfósiles del Cretácico Superior de Punta Ekelöf, Isla James Ross, Antártida. 4° Jornadas sobre Investigaciones Antárticas. Buenos Aires, Argentina, Resúmenes expandidos, Tomo 2: 305-313.Google Scholar

  • CONCHEYRO A., SALANI F.M., ADAMONIS S. and LIRIO J.M. 2007. Los depósitos diamictíticos cenozoicos de la Cuenca James Ross, Antártida: una síntesis estratigráfica y nuevos hallazgos paleontológicos. Revista de la Asociación Geológica Argentina 62: 568-585.Google Scholar

  • CONCHEYRO A., OLIVERA A., SANTILLANA S., MARENSSI S. and RINALDI C. 1991. Nanofósiles calcáreos del Cretácico superior de Isla Marambio. Antártica. 6° Congreso Geológico Chileno. Actas: 825-828.Google Scholar

  • CONCHEYRO A., AMENÁBAR C., CARAMÉS A., ADAMONIS S, LIRIO J.M., BALLENT S., DI PASQUO M. andMACKERN A. 2010. Cenozoic microbiotas from the eastern sector of the James Ross Is− land Group, Antarctic Peninsula. Scientific Committee on Antarctic Research 31st SCAR and Open Science Conference. Buenos Aires. CD−ROM.Google Scholar

  • CUSHMAN J.A. 1936. Cretaceous foraminifera of the family Chilostomellidae. Contributions from the Cushman Laboratory for Foraminiferal Research 12: 71-78.Google Scholar

  • DAVEY R.J. 1978. Marine Cretaceous palynology of Site 361, D.S.D.P. Leg 40, off southwestern Af− rica. Initial reports of the Deep Sea Drilling Project 40: 883-913.Google Scholar

  • DERES F. and ACHÉRITÉGUY J. 1980. Biostratigraphies des Nannoconides. Bulletin des Centres de Recherches Exploration−Production Elf−Aquitaine 4: 1-54.Google Scholar

  • DE VERNAL A. 2009. Marine palynology and its use for studying nearshore environments, From Deep−sea to Coastal Zones: Methods and Techniques for Studying Paleoenvironments, IOP Conference Series: Earth and Environmental Science 5: 1-13.Google Scholar

  • DI PASQUO M. and MARTIN J.E. 2013. Palynoassemblages associated with a theropod dinosaur from the Snow Hill Island Formation (Lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135-154.CrossrefGoogle Scholar

  • FLORISBAL L.S., KOCHHANN K.G.D., BAECKER−FAUTH S., FAUTH G., VIVIERS M.C., DE ARAÚJO CARVALHO M. and RODRIGUEZ CABRAL RAMOS R. 2013. Benthic foraminifera, ostracods and radiolarians from the Lachman Crags Member (Santa Marta Formation), Upper Santonian- Lower Campanian (Upper Cretaceous) of James Ross Island, Antarctica. Revista Brasileira de Paleontología 16: 181-196.Google Scholar

  • FRENZEL P. 2000. Die benthischen Foraminiferen der Rügener Schreibkreide (Unter-Maastrichtium, NE−Deutschland). Neue Paläontologische Abhandlungen 3: 1-361.Google Scholar

  • GARDIN S., BULOT L.G., COCCIONI R., DE WEVER P., HISHIDA K. and LAMBERT E. 2000. The Valanginian to Hauterivian hemipelagic successions of the Vocontian Basin (SE France): new high resolution integrated biostratigraphical data. 6th International Cretaceous Symposium. Vienna, Abstracts: 34.Google Scholar

  • GARTNER S. Jr., 1968. Coccoliths and related nannofossils from Upper Cretaceous deposits of Texas and Arkansas. The University of Kansas, Paleontological Contribution, Serial Number 48, Protista, Article 1: 1-56.Google Scholar

  • GAŹDZICKA E. and GAŹDZICKI A. 1994. Recycled Upper Cretaceous calcareous nannoplankton from the Pecten Conglomerate of Cockburn Island, Antarctic Peninsula. Polish Polar Research 15: 3-13.Google Scholar

  • GAŹDZICKI A. 1989. Planktonic foraminifera from the Oligocene Polonez Cove Formation of King George Island, West Antarctica. Polish Polar Research 10: 47-55.Google Scholar

  • GAŹDZICKI A. andMAJEWSKI W. 2003. Recent foraminifera from Goulden Cove of King George Is− land, Antarctica. Polish Polar Research 24: 3-12.Google Scholar

  • GAŹDZICKI A. andMAJEWSKI W. 2012. Foraminifera from the Eocene La Meseta Formation of Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic Science 24: 408-416.CrossrefGoogle Scholar

  • GAŹDZICKI A. and WEBB P.N. 1996. Foraminifera from the Pecten Conglomerate (Pliocene) of Cockburn Island, Antarctic Peninsula. Palaeontologia Polonica 55: 147-174.Google Scholar

  • GENNARI F. 1995. I foraminiferi agglutinati delle sezioni di Chorrillo Leonardo e di Ekeloff ovest (Isola di James Ross, Antartide). Corso di Laurea in Scienze Geologiche, Università degli Studi di Parma, Facoltà di Scienze Matematiche, Fisiche e Naturali: 107 pp.Google Scholar

  • GUERRA R.M., CONCHEYRO A., FAUTH G., DE ARAUJO CARVALHO M. and RODRIGUEZ CABRAL RAMOS R. (submitted) Lower Campanian Calcareous Nannofossils from Santa Marta Forma− tion, northern James Ross Island (Antarctic Peninsula). Cretaceous Research.Google Scholar

  • GUERRA R.M., FAUTH G.,CONCHEYRO A.,ARAUJOCARVALHO M. andRODRIGUEZCABRALRAMOS R. 2012. Nannofóseis Calcarios do Campaniano no Membro Lachman Crags, nordeste da Ilha James Ross, Antarctica. 46° Congresso Brasileiro de Geología. Santos, Brasil. CD−ROM.Google Scholar

  • HAMBREY M.J., SMELLIE J.L.,NELSON A.E. and JOHNSON J.S. 2008. Late Cenozoic glacier−volcano interaction on James Ross Island and adjacent areas, Antarctic Peninsula region. Geological So− ciety of America, Bulletin 120: 709-731.Google Scholar

  • HANNAH M.J., WRENN J.H. and WILSON G.S. 1998. Early Miocene and Quaternary marine palyno− morphs from Cape Roberts Project CRP−1, McMurdo Sound, Antarctica. Terra Antartica 5: 527-538.Google Scholar

  • HEDLEY R.H.,HURDLE C. M. and BURDETT I.D.J. 1967. The marine fauna of New Zeland: Intertidal foraminifera of the Corallina officinalis Zone. New Zealand Oceanographic Institute Memoir 38: 1-86.Google Scholar

  • HOLLAND R. 1910. The fossil Foraminifera. Wissenschaftliche Ergebnisse der Schwedischen Süd− polar−Expedition 1901-1903, Stockholm 3: 1-11.Google Scholar

  • HRADECKÁ L., VODRÁŽKA R. and NÝVLT D. 2011. Foraminifera from the Upper Cretaceous of northern James Ross Island (Antarctica): a preliminary report. Czech Polar Reports 1: 88-95.Google Scholar

  • HUBER B.T. 1988. Upper Campanian-Paleocene foraminifera from the James Ross Island region, Antarctic Peninsula. Geological Society of America, Memoir 169: 163-252.Google Scholar

  • HUBER B.T., HARWOOD D.M. andWEBB P. 1983. Upper Cretaceous microfossil biostratigraphy of Seymour Island, Antarctic Peninsula. Antarctic Journal of the United States 18: 72-74.Google Scholar

  • IGARASHI A., NUMANAMI H., TSUCHIYA Y. and FUKUCHI M. 2001. Bathymetric distribution of fos− sil foraminifera within marine sediments cores from the eastern part of Lützow−Holm Bay, East Antarctica, and its paleoceanographic implications. Marine Micropaleontology 42: 125-162.CrossrefGoogle Scholar

  • INESON J.R., CRAME J.A. and THOMSON M.R.A.1986. Lithostratigraphy of the Cretaceous Strata of West James Ross Island, Antarctica. Cretaceous Research 7: 141-159.CrossrefGoogle Scholar

  • ISHMAN S.E. and DOMACK E.W. 1994. Oceanographic controls on benthic foraminifers from the Bellingshausen margin of the Antarctic Peninsula. Marine Micropaleontology 24: 119-155.CrossrefGoogle Scholar

  • JONKERS H.A., LIRIO J.M., DEL VALLE R.A. and KELLEY S.P. 2002. Age and depositional environ− ment of the Miocene-Pliocene glaciomarine deposits, James Ross Island, Antarctica. Geologi− cal Magazine 139: 577-594.Google Scholar

  • KULHANEK D.K. 2007. Paleocene and Maastrichtian calcareous nannofossils from clasts in Pleistocene glaciomarine muds from the northern James Ross Basin, western Weddell Sea. In: A.K. Cooper, C.R. Raymoud (eds) Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th ISAES, USGS Open−File Report 2007−1047. Short Research Paper 019: 1-5.Google Scholar

  • KULHANEK D.K. 2009. Calcareous Nannoplankton as Paleoceanographic and Biostratigraphic Prox− ies: Examples from theMid−Cretaceous Equatorial Atlantic (ODP Leg 207) and Pleistocene of the Antarctic Peninsula (NBP0602A) and North Atlantic (IODP Expedition 306). Ph.D. dissertation. Department of Geological Sciences, Florida State University, Tallahassee: 1-210.Google Scholar

  • LEES J. 2005. Web−chat 5. Journal of Nannoplankton Research 27: 177-186.Google Scholar

  • LESCANO M. and CONCHEYRO A. 2009. Nanofósiles calcáreos de la Formación Agrio (Cretácico in− ferior) en el sector sudoccidental de la Cuenca Neuquina, Argentina. Ameghiniana 46: 73-94.Google Scholar

  • LIRIO J.M., NÚÑEZ H.J., BERTELS−PSOTKA A. and DEL VALLE R.A. 2003. Diamictos fosilíferos (Mioceno-Pleistoceno): Formaciones Belén, Gage y Terrapin en la isla James Ross, Antártica. Revista de la Asociación Geológica Argentina 58: 298-310.Google Scholar

  • LIRIO J.M., CONCHEYRO A., CHAPARRO M.A., NYVIT D. and MLCOCH F. 2007. Diamictita Cabo Lamb, un nuevo depósito fosilífero marino cenozoico en Isla Vega, Península Antártica. 6° Simposio Argentino y 3° Congreso Latinoamericano sobre investigaciones Antárticas. Bue− nos Aires, Argentina, Actas. CD−ROM.Google Scholar

  • MACFADYEN W.A. 1966. Foraminifera from the Upper Cretaceous of James Ross Island. Bulletin, British Antarctic Survey 8: 75-87.Google Scholar

  • MACPHAIL M.K. and TRUSWELL E.M. 2004a. Palynology of Site 1166, Prydz Bay, East Antarctica. Proceedings of the Ocean Drilling Program, Scientific Results 188: 1-43.Google Scholar

  • MACPHAIL M.K. and TRUSWELL E.M. 2004b. Palynology of Neogene Slope and Rise Deposits from ODP Sites 1165 and 1167, East Antarctica. Proceedings of the Ocean Drilling Program, Scien− tific Results 188: 1-20.Google Scholar

  • MAJEWSKI W. 2005. Benthic foraminiferal communities: distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Polish Polar Research 26: 159-214.Google Scholar

  • MAJEWSKI W. and ANDERSON J.B. 2009. Holocene foraminiferal assemblages from Firth of Tay, Antarctic Peninsula: Paleoclimate implications. Marine Micropaleontology 73: 135-147.CrossrefGoogle Scholar

  • MAJEWSKI W., OLEMPSKA E., KAIM A. and ANDERSON J.B. 2012. Rare microfossils from Middle Miocene strata, Weddell Sea off Antarctic Peninsula. Polish Polar Research 33: 245-257.Google Scholar

  • MARENSSI S.A., CASADÍO S. and SANTILLANA S.N. 2010. Record of Late Miocene glacial deposits on Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic Science 22: 193-198.CrossrefGoogle Scholar

  • MARENSSI S., SALANI F. M. and SANTILLANA S. 2001. Geología de Cabo Lamb, Isla Vega, Península Antártica. Contribución Instituto Antártico Argentino 530: 1-43.Google Scholar

  • MEARNS R.M. 2010. Marine Palynomorphs from the Plio−Pleistocene interval of the AND−1B Drill−Core McMurdo Sound, Antarctica. Master Thesis School of Geography, Environment and Earth Sciences, Victoria University of Wellington: 91 pp.Google Scholar

  • MEDINA F., BUATOIS L. and LOPEZ ANGRIMAN A. 1992. Estratigrafía del Grupo Gustav en isla James Ross, Antártida. In: C.A. Rinaldi (ed.) Geología de la isla James Ross. Publicación del Instituto Antártico Argentino, Buenos Aires: 167-192.Google Scholar

  • MORRIS J. 1852. Description of some fossil shells from the lower Thanet sands. The Quaterly Jour− nal of the Geological Society of London 8: 264-268.Google Scholar

  • MOSTAJO E. 1991. Nanofósiles calcáreos cenozoicos del pozo “Las Violetas 3". Isla Grande de Tierra del Fuego, Argentina. Ameghiniana 28: 311-315.Google Scholar

  • NELSON A. E., SMELLIE J.L., HAMBREY M.J., WILLIAMS M., VAUTRAVERS M., SALZMANN U., MCARTHUR J.M. and REGELOUS M. 2009. Neogene glacigenic debris flows on James Ross Is− land, northern Antarctic Peninsula, and their implications for regional climate history. Quater− nary Science Reviews 28: 3138-3160.CrossrefGoogle Scholar

  • NÍ FHLAITHEARTA S., ERNST S., DE LANGE G.J. and REICHART G.J. 2013. Molecular and isotopic composition of foraminiferal organic linings. Marine Micropaleontology 102: 69-78.CrossrefGoogle Scholar

  • NOËL D. 1965. Note préliminaire sur des coccolithes jurassiques. Cahiers du Micropaléontogy 408: 1-12.Google Scholar

  • NÝVLT D., KOŠLER J.,MLČOCH B.,MIXA P., LISÁ L., BUBÍK M. and HENDRIKS B.W.H. 2011. The Mendel Formation: Evidence for Late Miocene climatic cyclicity at the northern tip of the Ant− arctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 299: 363-384.CrossrefGoogle Scholar

  • OBOH F.E. 1992. Middle Miocene palaeoenvironments of the Niger Delta. Palaeogeography, Palaeoclimatology, Palaeoecology 92: 55-84.CrossrefGoogle Scholar

  • PERCH−NIELSEN K. 1968. Der Feinbau und die Klassifikation der Coccolithen aus dem Maastrichtien von Dänemark. Det kongelige Danske Videnskabernes Selskab Biologiske Skrifter 16: 1-93.Google Scholar

  • PÉREZ PANERA J.P. 2009. Nanofósiles calcáreos paleógenos del sudeste de la provincia de Santa Cruz, Patagonia, Argentina. Ameghiniana 46: 273-284.Google Scholar

  • PÉREZ PANERA J.P. 2010. Sistemática y bioestratigrafía de los nanofósiles calcáreos del Cretácico del sudeste de la Cuenca Austral, Santa Cruz, Argentina. Tesis Doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata: 450 pp. (Unpublished).Google Scholar

  • PÉREZ PANERA J.P. and ANGELOZZI G.N. 2006. Nanofósiles calcáreos del Cretácico Tardío− Terciario, del Pozo BB III A x−1 (Bahía Blanca), Cuenca del Colorado, Argentina. Ameghiniana 43: 557-565.Google Scholar

  • QUILTY P.G. 2003. Neogene foraminifers and accessories, ODP Leg 188, Sites 1165, 1166, and 1167, Prydz Bay, Antarctica. Proceedings of the Ocean Drilling Program, Scientific Results 188: 1-41.Google Scholar

  • QUILTY P.G., LIRIO J.M. and JILLETT D. 2000. Stratigraphy of the Pliocene Sørdal Formation, Ma− rine Plain, Vestfold Hills, East Antarctica. Antarctic Science 12: 205-216.Google Scholar

  • REINHARDT P. 1964. Einige Kalkflagellaten−Gattungen (Coccolithophoriden, Coccolithineen) aus dem Mesozoikum Deutschlands. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin 6: 749-759.Google Scholar

  • REINHARDT P. 1965. Neue Familien für fossile Kalkflagellaten (Coccolithophoriden, Coccolithineen). Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin 7: 30-40.Google Scholar

  • RHUMBLER L. 1938. Foraminiferen aus dem Meeressand von Helgoland, gesammelt von A. Remane (Kiel). Kieler Meeresforschungen 2: 157-222.Google Scholar

  • ROBLES HURTADO G. and CONCHEYRO A. 1995. Sedimentología y bio−cronoestratigrafía (Nanofósiles calcáreos) del Nunatak Sanctuary Cliffs (Cretácico Superior), Isla Cerro Nevado, Antártida. 6° Congreso Argentino de Paleontología y Bioestratigrafía, Trelew, Argentina, Actas: 231-237.Google Scholar

  • RODRÍGUEZ BRIZUELA R., MARENSSI S., BARREDA V. and SANTILLANA S. 2007. Palynofacial ap− proach across the Cretaceous-Paleogene boundary in Marambio (Seymour) Island, Antarctic Peninsula. Revista de la Asociación Geológica Argentina 62: 236-241.Google Scholar

  • RONCHI D.I. and ANGELOZZI G.N. 1994. Bioestratigrafía del Cretácico-Terciario en dos pozos ubicados al oeste de la Cuenca Austral. Boletín de Informaciones Petroleras 39: 65-76.Google Scholar

  • ROTH P. and THIERSTEIN H. 1972. Calcareous nannoplankton: Leg 14 of the Deep Sea Drilling Pro− ject. Initial Reports of the Deep Sea Drillig Project 14: 421-485.Google Scholar

  • SALZMANN U., RIDING J., NELSON A. and SMELLIE J.L. 2011. How likely was a green Antarctic Peninsula during warm Pliocene interglacials? A critical reassessment based on the new palynofloras from James Ross Island. Paleogeography, Paleoclimatology, Palaeoecology 309: 73-82.Google Scholar

  • SCHERER R., HANNAH M.,MAFFIOLI P., PERSICO D., SJUNNESKOG C., STRONG C.P., TAVIANI M., WINTER D. and ANDRILL−MIS Science Team. 2007. Palaeontologic characterisation and anal− ysis of the AND−1B Core, ANDRILL McMurdo Ice Shelf Project, Antarctica. Terra Antarctica 14: 223-254.Google Scholar

  • SMELLIE J.L., JOHNSON J.S., MCINTOSH W.C., ESSER R., GUDMUNSSON M.T., HAMBREY M.J. and VANWYKDEVRIES B. 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 122-148.Google Scholar

  • STANCLIFFE R.P.W. 1989. Microforaminiferal linings: their classification, biostratigraphy and paleoecology, with special reference to specimens from British Oxfordian sediments. Micro− paleontology 35: 337-352.Google Scholar

  • ŠVÁBENICKÁ L.,VODRÁŽKA R. andNÝVLT D. 2012. Calcareous nannofossils from the Upper Creta− ceous of north ern James Ross Island, Antarctica: a pilot study. Geological Quarterly 56: 765-772.CrossrefGoogle Scholar

  • THOMAS E. 1990. Late Cretaceous through Neogene deep−sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica. Proceedings of the Ocean Drilling Program, Scientific Results 113: 571-594.Google Scholar

  • TYSON R.V. 1995. Sedimentary organic matter: organic facies and palynofacies. Chapman & Hall, London: 633 pp.Google Scholar

  • WARNY S. 2009. Species of the acritarch genus Palaeostomocystis Deflandre 1937: potential indica− tors of neritic subpolar to polar environments in Antarctica during the Cenozoic. Palynology 33: 43-54.Google Scholar

  • WARNY S., ANDERSON J.B., LONDEIX L. and BART P.J. 2007. Analysis of the dinoflagellate cyst ge− nus Impletosphaeridium as a marker of sea−ice conditions off Seymour Island. In: A.K. Cooper and C.R. Raymoud et al. (eds) Antarctica: A Keystone in a Changing World. Online Proceed− ings of the 10th ISAES, USGS Open−File Report 2007−1047. Short Research Paper 079: 4 pp.Google Scholar

  • WARNY S., WRENN J.H., BART P.J. and ASKIN R. 2006. Palynology of the NBP03−01A transect in the Northern Basin, Western Ross Sea, Antarctica: a Late Pliocene record. Palynology 30: 151-182.Google Scholar

  • WICKENDEN R.D.T. 1932. New species of foraminifera from the Upper Cretaceous of the Prairie Provinces. Transaction of the Royal Society of Canada 26: 85-91.Google Scholar

  • WISE S. 1983. Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 71 in the Falkland Plateau region, Southwest Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project 71: 481-550.Google Scholar

  • WISE S. andWIND F. 1977. Mesozoic and Cenozoic calcareous nannofossils recovered by DSDP Leg 36 drilling on the Falkland Plateau, south−west Atlantic sector of the Southern Ocean. Initial Re− ports of the Deep Sea Drilling Project 36: 269-491. Google Scholar

About the article

Published Online: 2014-04-04

Published in Print: 2014-03-01


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, ISSN (Print) 0138-0338, DOI: https://doi.org/10.2478/popore-2014-0003.

Export Citation

This content is open access. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pedro Raul Gutiérrez, M. lucía Balarino, and Florencia Mazurczak
Ameghiniana, 2016, Volume 53, Number 6, Page 695
[2]
Susana Adamonis, Urszula Hara, and Andrea Concheyro
Polish Polar Research, 2015, Volume 36, Number 4
[3]
Rodrigo do Monte Guerra, Andrea Concheyro, Jackie Lees, Gerson Fauth, Marcelo de Araujo Carvalho, and Renato Rodriguez Cabral Ramos
Cretaceous Research, 2015, Volume 56, Page 550

Comments (0)

Please log in or register to comment.
Log in