Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 35, Issue 2 (Jul 2014)

Molecular Species Delimitation of Icelandic Brittle Stars (Ophiuroidea)

Sahar Khodami
  • Corresponding author
  • Senckenberg am Meer, German Center for Marine Biodiversity Research, Südstrand 44, 26382 Wilhelmshaven
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro Martinez Arbizu / Sabine Stöhr / Silke Laakmann
  • Senckenberg am Meer, German Center for Marine Biodiversity Research, Südstrand 44, 26382 Wilhelmshaven
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-29 | DOI: https://doi.org/10.2478/popore-2014-0011

Abstract

Brittle stars (Echinodermata: Ophiuroidea) comprise over 2, 000 species, all of which inhabit marine environments and can be abundant in the deep sea. Morphological plasticity in number and shape of skeletal parts, as well as variable colors, can complicate correct species identification. Consequently, DNA sequence analysis can play an important role in species identification. In this study we compared the genetic variability of the mitochondrial cytochrome c subunit I gene (COI) and the nuclear small subunit ribosomal DNA (SSU, 18S rDNA) to morphological identification of 66 specimens of 11 species collected from the North Atlantic in Icelandic waters. Also two species delimitation tools, Automatic Barcode Gap Discovery (ABGD) and General Mixed Yule Coalescence Method (GMYC) were performed to test species hypotheses. The analysis of both gene fragments was successful to discriminate between species and provided new insights into some morphological species hypothesis. Although less divergent than COI, it is helpful to use the SSU region as a complementary fragment to the barcoding gene.

This article offers supplementary material which is provided at the end of the article.

Keywords: Icelandic waters; ophiuroids; echinoderms; ABGD; COI; GMYC; SSU

References

  • ALTSCHUL S.F., GISH W., MILLER W., MYERS E.W. and LIPMAN D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.CrossrefPubMedGoogle Scholar

  • BALLARD J.W.O. and WHITLOCK M.C. 2004. The incomplete natural history of mitochondria. Molecular Ecology 13: 729–744.CrossrefPubMedGoogle Scholar

  • BARANOVA Z.I. and KUNTSEVICH Z.V. 1969. Ophiuroidea. In: L.A. Zenkevich (ed.) Biology of the Pacific Ocean, 2. Nauka, Moscow: 115–124.Google Scholar

  • BARTSCH I. 1987. Notes on Ophiuroidea (Echinodermata) from the northeastern Atlantic Ocean Spixian 14: 95-112.Google Scholar

  • BLABER S.J.M., MAY J.L., YOUNG J.W. and BULMAN CM. 1987. Population density and predators of Ophiacanthafidelis (Koehler, 1930) Echinodermata: Ophiuroidea on the continental slope of Tasmania. Marine and Fresh Water 38: 243-247.Google Scholar

  • BLAXTER M. 2004. The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society B 359: 669-679.Google Scholar

  • BLAXTER M.L., DELEY P., GAREY J.R., LIU L.X. and SCHELDEMAN P. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392: 71-75.Google Scholar

  • BOISSIN E., FÉRAL J.P. and CHENUIL A. 2008. Defining reproductively isolated units in a cryptic and syntopic species complex using mitochondrial and nuclear markers: the brooding brittle star, Amphipholis squamata (Ophiuroidea). Molecular Ecology 17: 1732–1744.CrossrefGoogle Scholar

  • CHASE M.W., SALAMIN N. and WILKINSON M. 2005. Land plants and DNA barcodes: short-term and long-term goals. Philosophical Transactions of the Royal Society B 360: 1889-1895.Google Scholar

  • CLOUSE R., JANIES D. and KERR A.M. 2005. Resurrection of Bohadschia bivittata from B. marmorata (Holothuroidea: Holothuriidae) based on behavioral, morphological, and mitochondrial DNA evidence. Zoology 108: 27-39.CrossrefGoogle Scholar

  • CRAWFORD T.J. and CRAWFORD B J. 2007. Linckia multifora (Echinodermata: Asteroidea) in Raro-tonga, Cook Islands: reproductive mechanisms and ecophenotypes. Pacific Science 61: 371-381.CrossrefGoogle Scholar

  • DRUMMOND A.J. and RAMBAUT A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 8.Google Scholar

  • DRUMMOND A.J., SUCHARD M.A., XIE D. and RAMBAUTR A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969-1973.Google Scholar

  • EDGAR R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids 32: 1792-1797.PubMedGoogle Scholar

  • FARRAN G.P. 1913. The deep water Asteroidea, Ophiuroidea and Echinoidea of the West coast of Ireland. Scientific Investigations, 1912. Fisheries Branch, Department of Agriculture for Ireland, Dublin 6: 1-66.Google Scholar

  • FOLMER O.M., BLACK W. and HOEN R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.PubMedGoogle Scholar

  • FOLTZ D.W., BOLTON M.T., KELLEY S.P., KELLEY B.D. and NGUYEN A.T. 2007. Combined mitochondrial and nuclear sequences support the monophyly of forcipulatacean sea stars. Molecular Phylogenetics and Evolution 43: 627-634.CrossrefPubMedGoogle Scholar

  • FUNK D.J. and OMLAND K.E. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34: 397-423.CrossrefGoogle Scholar

  • GRIEG J.A. 1921. Echinodermata. Report on the scientific results of the Michael Sars North Atlantic Deep-Sea Expedition 1910 3: 1–47.Google Scholar

  • HART M.W. and PODOLSKY R.D. 2005. Mitochondrial DNA phylogeny and rates of larval evolution in Macrophiothrix brittle stars. Molecular Phylogenetics and Evolution 34: 438–447.CrossrefGoogle Scholar

  • HEBERT P.D.N., CYWINSKA A., BALL S.L. and DE WAARD J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: 270: 313-322.Google Scholar

  • HOAREAU T.B. and BOISSIN E. 2010. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Molecular Ecology Resources 10: 960-967.CrossrefPubMedGoogle Scholar

  • JEFFERY C.H., EMLET R.B. and LITTLEWOODD.T.J. 2003. Phylogeny and evolution of developmental mode in temnopleurid echinoids. Molecular Phylogenetics and Evolution 28: 99-108.PubMedCrossrefGoogle Scholar

  • KIMURA M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.CrossrefGoogle Scholar

  • KNOWLES L.L. and CARSTENS B.C. 2007. Delimiting species without monophyletic gene trees. Systematic Biology 56: 887-895.PubMedCrossrefGoogle Scholar

  • KOEHLER R. 1914. A contribution to the study of ophiurans of the United States National Museum. Bulletin of the United States National Museum 84: 1-173.Google Scholar

  • LELIAERT F., VERBRUGGEN H., WYSOR B. and CLERCK O.D. 2009. DNA taxonomy in morphologically plastic taxa: algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales). Molecular Phylogenetics and Evolution 53: 122-133.CrossrefPubMedGoogle Scholar

  • LIAO D. 1999. Concerted evolution, molecular mechanism and biological implications. American Journal of Human Genetics 64: 24–30.PubMedCrossrefGoogle Scholar

  • LOHSE K. 2009. Can mtDNA barcodes be used to delimit species? A response to Pons et al. 2006. Systematic Biology 58: 439–442.Google Scholar

  • LORENZ J.G., JACKSON W.E., BECK J.C. and HANNER R. 2005, The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philosophical Transactions of the Royal Society B 360: 1869-1877.Google Scholar

  • MALLET J. 1995. A species definition for the modern synthesis. Trends in Ecology and Evolution 10: 294-299.Google Scholar

  • MARKMANN M. and TAUTZ D. 2005. Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philosophical Transactions of the Royal Society, Series B 60: 1917-1924.Google Scholar

  • MARTYNOV A.V. and LITVINOVA N.M. 2008. Deep-water Ophiuroidea of the northern Atlantic with descriptions of three new species and taxonomic remarks on certain genera and species. Marine Biology Research 4: 76-111.CrossrefGoogle Scholar

  • MONAGHAN M.T., BALKE M., GREGORY T.R. and VOGLER A.P. 2005. DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society B 360: 1925-1933.Google Scholar

  • MONAGHAN M.T., WILD R. and ELLIOT M. 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298-311.PubMedCrossrefGoogle Scholar

  • MORTENSEN T. 1933. Ophiuroidea. Danish Ingolf Expedition 4 (8): 5-121.Google Scholar

  • O’MEARA B.C. 2010. New heuristic methods for joint species delimitation and species tree inference. Systematic Biology 59: 59-73.CrossrefGoogle Scholar

  • OWEN C.L., MESSING C.G., ROUSE G.W. and SHIVJI M.S. 2009. Using a combined approach to explain the morphological and ecological diversity in Phanogenia gracilis Hartlaub, 1893 (Echinodermata: Crinoidea) sensu lato: two species or intraspecific variation? Marine Biology 156: 1517-1529.CrossrefGoogle Scholar

  • PATERSON G.L.J. 1985. The deep-sea Ophiuroidea of the North Atlantic Ocean. Bulletin of the British Museum (Natural History), Zoology 49: 1-162.Google Scholar

  • PIEPENBURG D. 1989. Absolute densities and spatial distribution patterns of epibenthic species from the Fram Strait. Conseil permanent international pour ľExploration de la Mer. The International Council for the Exploration of the Sea (ICES), Copenhagen: 188 pp.Google Scholar

  • PIEPENBURG D. and JUTERZENKA K.Y. 1994. Abundance, biomass and spatial distribution pattern of brittle stars (Echinodermata: Ophiuroidea) on the Kolbeinsey Ridge north of Iceland. Polar Biology 14: 185-194.Google Scholar

  • PONS J., BARRACLOUGH T.G. and GOMEZ-ZURITA J. 2006. Sequence based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595-609.CrossrefGoogle Scholar

  • POSADAD. 2008. jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25: 1253-1256.CrossrefGoogle Scholar

  • PUILLANDREN., LAMBERT A., BROUILLET S. and ACHAZG. 2011. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.Google Scholar

  • PUILLANDRE N., MODICA M.V., ZHANG Y., SIROVICH L., BOISSELIER M.C., CRUAUD C., HOLFORD M. and SAMADI S. 2012. Large-scale species delimitation method for hyperdiverse groups, Molecular Ecology 21: 2671-2691.PubMedCrossrefGoogle Scholar

  • R CORE TEAM 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/.Google Scholar

  • RAMBAUT A. and DRUMMOND A.J. 2007. Tracer v1.5.0. Available from http://beast.bio.ed.ac.uk/Tracer.Google Scholar

  • RODRIGUES C.F., PATERSON G.L.J., CABRINOVIC A. and CUNHA M.R. 2011. Deep-sea ophiuroids (Echinodermata: Ophiuroidea: Ophiurida) from the Gulf of Cadiz, NE Atlantic. Zootaxa 2754: 1-26.Google Scholar

  • ROSENBERG N.A. and TAO R. 2008. Discordance of species trees with their most likely gene trees: the case of five taxa. Systematic Biology 57: 131-140.CrossrefPubMedGoogle Scholar

  • ROSS K.G., GOTZEK D., ASCUNCE M.S. and SHOEMAKER D.D. 2010. Species delimitation: a case study in a problematic ant taxon. Systematic Biology 59: 162-184.CrossrefGoogle Scholar

  • SIMON C., FRATI F. and BECKENBACH A. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Annals of the Entomological Society of America 87: 651-701.Google Scholar

  • SMITH C.R., and HAMILTON S.C. 1988. Epibenthic megafauna of the bathyal basin off southern California: patterns off abundance, biomass, and dispersion. Deep-Sea Research, Part A, Oceanography Research Papers 30: 907-928.Google Scholar

  • SMITH A.B., PATERSON G.L.J. and LAFAY B. 1995. Ophiuroid phylogeny and higher taxonomy: morphological, molecular and palaeontological perspectives. Zoological Journal of the Linnean Society 114: 213-243.CrossrefGoogle Scholar

  • SONNENBERG R., ARNE W. N. and DIETHARD T. 2007. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 4: 6.Google Scholar

  • STÖHR S. 2001. Amphipholis linopneusti n. sp., a sexually dimorphic amphiurid brittle star (Echinodermata: Ophiuroidea), epizoic on a spatangoid sea urchin. In: M. Barker (ed.) Echinoderms 2000: Proceedings of the 10th International Echinoderm Conference, Dunedin, New Zealand. A.A. Balkema, Lisse: 317-322.Google Scholar

  • STÖHR S. 2003. A new fissiparous amphiurid brittlestar (Echinodermata: Ophiuroidea) from southwest of Iceland. Sarsia 88: 373-378.Google Scholar

  • STÖHR S. 2005. Who’s who among baby brittle stars (Echinodermata: Ophiuroidea): postmeta-morphic development of some North Atlantic forms. Zoological Journal of the Linnean Society 143: 543-576.CrossrefGoogle Scholar

  • STÖHR S. and MUTHS D. 2010. Morphological diagnosis of the two genetic lineages of Acrocnida brachiata (Echinodermata: Ophiuroidea) with description of a new species. Journal of the Marine Biology Association of the United Kingdom 90: 831-843.Google Scholar

  • STÖHR S. and SEGONZACM. 2005. Deep-sea ophiuroids (Echinodermata) from reducing and non-reducing environments in the North Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom 85: 383-402.CrossrefGoogle Scholar

  • STÖHR S., O’HARA T. and THUY B. 2012. Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea). PLoS ONE 7 (3): e31940.Google Scholar

  • SUMIDA P.Y.G., TYLER P.A., GAGE J.D. and NØRREVANG A. 1998. Postlarval development in shallow and deep-sea ophiuroids (Echinodermata: Ophiuroidea) of the NE Atlantic Ocean. Zoological Journal of the Linnean Society 124: 267-300.CrossrefGoogle Scholar

  • TAMURA K., PETERSON D. and PETERSON N. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.CrossrefGoogle Scholar

  • TOMINAGA H., NAKAMURA S. and KOMATSU M. 2004. Reproduction and Development of the Conspicuously Dimorphic Brittle Star Ophiodaphne formata (Ophiuroidea). Biological Bulletin 206: 25-34.CrossrefGoogle Scholar

  • VERRILL A.E. 1885. Results of the explorations made by the Steamer Albatross off the northern coast of the United States in 1883. Reports of the United States Commission on Fisheries: 503-699.Google Scholar

  • VERRILL A.E. 1899. Report on the Ophiuroidea; collected by the Bahama Expedition from the University of Iowa in 1893. Bulletin from the Laboratories of Natural History of the State University of Iowa 5: 1-86.Google Scholar

  • WARD R.D., HOLMES B.H. and O’HARA T.D. 2008. DNA barcoding discriminates echinoderm species. Molecular Ecology Resources 8: 1202-1211.CrossrefGoogle Scholar

  • WEISROCK D.W., SHAFFER H.B., STORZ B.L., STORZ S.R. and VOSS S.R. 2006. Multiple nuclear gene sequences identify phylogenetic species boundaries in the rapidly radiating clade of Mexican ambystomatid salamanders. Molecular Ecology 15: 2489-2503.CrossrefPubMedGoogle Scholar

  • WRAY G.A. 1999. Echinodermata. Spiny-skinned Animals: Sea Urchins, Starfish and their Allies. Available from URL: http://tolweb.org/echinodermata/2497/1999.12.14 in The Tree of Life Web Project. http://tolweb.org/.Google Scholar

About the article

Received: 2014-02-20

Accepted: 2014-04-22

Published Online: 2014-07-29


We gratefully acknowledge the captain and crew members of the R/V Meteor (cruiseNo. 85 Leg 3, 2011) and German Center forMarine Biodiversity Research team for help in providing and sorting samples as well as laboratory assistance. Financial support was provided by the German Science Foundation (DFG) under the grant number BR3843/4-1. Also, we would like to express our sincere thanks to the reviewers who identified areas of our manuscript that needed corrections or modification.


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, DOI: https://doi.org/10.2478/popore-2014-0011.

Export Citation

© 2014 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Annika Janssen, Stefanie Kaiser, Karin Meißner, Nils Brenke, Lenaick Menot, Pedro Martínez Arbizu, and Judi Hewitt
PLOS ONE, 2015, Volume 10, Number 2, Page e0117790
[2]
Silke Laakmann, Karin Boos, Thomas Knebelsberger, Michael J. Raupach, and Hermann Neumann
Helgoland Marine Research, 2017, Volume 70, Number 1

Comments (0)

Please log in or register to comment.
Log in