Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
In This Section

New insights into the 21 November 2000 tsunami in West Greenland from analyses of the tree−ring structure of Salix glauca

Agata Buchwał
  • Instytut Geoekologii i Geoinformacji, Uniwersytet im. Adama Mickiewicza, ul. Dzięgielowa 27, 61−680 Poznań, Poland
  • Department of Biological Sciences, University of Alaska Anchorage, Ecosystem and Biomedical Lab, 3151 Alumni Loop, Anchorage, Alaska 99508, USA
  • Email:
/ Witold Szczuciński
  • Corresponding author
  • Instytut Geologii, Uniwersytet im. Adama Mickiewicza, ul. Maków Polnych 16, 61 606 Poznań, Poland
  • Email:
/ Mateusz C. Strzelecki
  • Zakład Geomorfologii, Uniwersytet Wrocławski, pl. Uniwersytecki 1, 50 137 Wrocław, Poland
  • Email:
/ Antony J. Long
  • Department of Geography, Durham University, Lower Mountjoy, Durham DH1 3LE, UK
  • Email:
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/popore-2015-0005


We test the application of dendrochronological methods for dating and assessing the environmental impacts of tsunamis in polar regions, using an example of the 21 Novem− ber 2000 landslide−generated tsunami in Vaigat Strait (Sullorsuaq Strait), West Greenland. The studied tsunami inundated a c. 130 m−wide coastal plain with seawater, caused erosion of beaches and top soil and covered the area with an up to 35 cm−thick layer of tsunami de− posits composed of sand and gravel. Samples of living shrub, Salix glauca (greyleaf wil− low) were collected in 2012 from tsunami−flooded and non−flooded sites. The tree−ring analyses reveal unambiguously that the tsunami−impacted area was immediately colonized during the following summer by rapidly growing shrubs, whilst one of our control site spec− imens records evidence for damage that dates to the time of the tsunami. This demonstrates the potential for dendrochronological methods to act as a precise tool for the dating of Arc− tic paleotsunamis, as well as rapid post−tsunami ecosystem recovery. The reference site shrubs were likely damaged by solifluction in the autumn 2000 AD that was triggered by high seasonal rainfall, which was itself a probable contributory factor to the tsunami−gener− ating landslide.

Keywords: Arctic,Greenland; tsunami; dendrochronology; Salix glauca; plant colonization


  • ALESTALO J. 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105: 1-140.

  • BESCHEL R.E. andWEBB D. 1963. Growth ring studies on arctic willows. Axel Heiberg Island: Pre− liminary report 1961-1962. McGill University, Montreal: 189-198.

  • BLOCK D., SASS−KLAASSEN U., SCHAEPMAN−STRUB G., HEIJMANS M.M.P.D., SAUREN P. and BERENDSE F. 2011. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8: 1169-1179 . [Crossref] [Web of Science]

  • BONDEVIK S., STORMO S.K. and SKJERDAL G. 2012. Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event. Quaternary Science Reviews 45: 1-6. [Web of Science] [Crossref]

  • BONDEVIK S., SVENDSEN J.I. andMANGERUD J. 1997. Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology 44: 1115-1131. [Crossref]

  • BRILL D., KLASEN N., BRÜCKNER H., JANKAEW K., SCHEFFERS A., KELLETAT D. and SCHEFFERS S. 2012. OSL dating of tsunami deposits from Phra Thong Island, Thailand. Quaternary Geo− chronology 10: 224-229.

  • BUCHWAL A., RACHLEWICZ G., FONTI P., CHERUBINI P. andGÄRTNER H. 2013. Temperture modu− lates intra−plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biology 36: 1305-1318. [Crossref] [Web of Science]

  • CALLAGHAN T.V., CHRISTIANSEN T.R. and JANTZE E.J. 2011. Plant and vegetation dynamics on Disko island, West Greenalnd: Snapshots separated by over 40 years. Ambio 40: 624-637. [Crossref] [Web of Science] [PubMed]

  • CHAGUÉ−GOFF C., NIEDZIELSKI P., WONG H.K.Y., SZCZUCIŃSKI W., SUGAWARA D. and GOFF J. 2012. Environmental impact assessment of the 2011 Tohoku−oki tsunami on the Sendai Plain. Sedimentary Geology 282: 175-187. [Web of Science] [Crossref]

  • COCHARD R., RANAMUKHAARACHCHI S.L., SHIVAKOTI G.P., SHIPIN O.V., EDWARDS P.J. and SEELAND K.T. 2008. The 2004 tsunami in Aceh and Southern Thailand: A review on coastal ecosystems, wave hazards and vulnerability. Perspectives in Plant Ecology, Evolution and Sys− tematics 10: 3-40.

  • DAHL−JENSEN T., LARSEN L.M., PEDERSEN S.A.S., PEDERSEN J., JEPSEN H.F., PEDERSEN G.K., NIELSEN T., PEDERSEN A.K., VON PLATEN−HALLERMUND F. and WENG W. 2004. Landslide and tsunami 21 November 2000 in Paatuut, West Greenland. Natural Hazards 31: 277-287.

  • DAWSON A.G., LONG D. and SMITH D.E. 1988. The Storegga Slides: evidence from Eastern Scot− land for a possible tsunami. Marine Geology 82: 271-276. [Crossref]

  • ELVEBAKK A., ELVEN R. and RAZZHIVIN V.Y. 1999. Delimitation, zonal and sectorial subdivision of the Arctic for the Panarctic Flora Project. In: I. Nordal, V.Y. Razzhivin (eds) The Species Con− cept in the High North - A Panarctic Flora Initiative. The Norwegian Academy of Science and Letters, Oslo: 375-386.

  • FORBES B.C., FAURIA M.M. and ZETTERBERG P. 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biology 16: 1542-1554. [Web of Science] [Crossref]

  • GÄRTNER−ROER I., HEINRICH I. and GÄRTNER H. 2013. Wood anatomical analysis of alpine shrubs growing on creeping mountain permafrost. Dendrochronologia 31: 97-104. [Web of Science] [Crossref]

  • GOFF J., CHAGUÉ−GOFF C., NICHOL S., JAFFE B. and DOMINEY−HOWES D. 2012. Progress in palaeotsunami research. Sedimentary Geology 243-244: 70-88. [Web of Science]

  • GOFF J.,WELLS A., CHAGUÉ−GOFF C., NICHOL S.L. and DEVOY R.J.N. 2004. The elusive AD 1826 tsunami, South Westland, New Zealand. New Zealand Geographer 60: 14-25.

  • HANSEN B.U., ELBERLING B., HUMLUM O. and NIELSEN N. 2006. Meteorological trends (1991-2004) at Arctic Station, Central West Greenland (69_15’N) in a 130 years perspective. Geografisk Tidsskrift, Danish Journal of Geography 106: 45-55.

  • HUMLUM O. 1998. Active layer thermal regime 1991-1996 at Qeqertarsuaq, Disko Island, Central West Greenland. Arctic Alpine Research 30: 295-305. [Crossref]

  • JAKOB M. 1995. Dendrochronology to measure average movement rates of gelifluction lobes. Dendro− chronologia 13: 141-146.

  • JACOBY G.C., BUNKER D.E. and BENSON B.E. 1997. Tree−ring evidence for an A.D. 1700 Cascadia earthquake in Washington and northern Oregon. Geology 25: 99-102.

  • KAISER G., BURKHARD B., RÖMER H., SANGKAEW S., GRATEROL R., HAITOOK T., STERR H. and SAKUNA−SCHWARTZ D. 2013. Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand. Natural Hazards Earth System Sciences 13: 3095-3111. [Crossref] [Web of Science]

  • KOLISHCHUK V. 1990. Dendroclimatological study of prostrate woody plant. In: E.R. Cook and L.A. Kairiukstis (eds) Methods of dendrochronology applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht: 394 pp.

  • LONG A.J., WOODROFFE S.A., ROBERTS D.H. and DAWSON S. 2011. Isolation basins, sea−level changes and the Holocene history of the Greenland Ice Sheet. Quaternary Science Reviews 30: 3748-3768. [Crossref]

  • MILLER D.J. 1960. Giant waves in Lituya Bay Alaska. Geological Survey Professional Paper 354C: 249 pp.

  • MURARI M.K., ACHYUTHAN H. and SINGHVI A.K. 2007. Luminescence studies on the sediments laid down by the December 2004 tsunami event: prospects for the dating of palaeo tsunamis and for the estimation of sediment fluxes. Current Science 92: 367-371.

  • MYERS−SMITH I.H.,HIK D.S.,KENNEDY C., COOLEY D., JOHNSTONE J.F.,KENNEY A.J. andKREBS C.J. 2011a. Expansion of canopy−forming willows over the twentieth century on Herschel Is− land, Yukon Territory, Canada. Ambio 40: 610-623. [Web of Science] [Crossref]

  • MYERS−SMITH I.H., HIK D.S., FORBES B.C.,WILMKING M., HALLINGER M., LANTZ T., BLOK D., SASS−KLAASSEN U., TAPE K.D.,MACIAS−FAURIA M., LÉVESQUE E., BOUDREAU S., ROPARS P., HERMANUTZ L., TRANT A., COLLIER L.S., WEIJERS S., ROZEMA J., RAYBACK S.A., SCHMIDT N.M., SCHAEPMAN−STRUB G.,WIPF S., RIXEN C., MÉNARD C.B., VENN S., GOETZ S., ANDREU−HAYLES L., ELMENDORF S., RAVOLAINEN V., WELKER J., GROGAN P. and EPSTEIN H.E. 2011b. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters 6 (4): 045509. [Crossref] [Web of Science]

  • MYERS−SMITH I.H., HALLINGER M., BLOK D., SASS−KLAASSEN U., RAYBACK S.A., WEIJERS S., TRANT A., TAPE K.D.,NAITO A.T.,WIPF S.,RIXEN C.,DAWES M.A.,WHEELER J.,BUCHWAL A., BAITTINGER C., MACIAS−FAURIA M., FORBES B.C., LÉVESQUE E., BOULANGER−LAPOINTE N., BEIL I., RAVOLAINEN V. andWILMKING M. 2015. Methods for measuring arctic and alpine shrub growth: a review. Earth−Science Reviews 140: 1-13. [Crossref] [Web of Science]

  • NAKATSUBO T., FUJIYOSHI M., YOSHITAKE S., KOIZUMI H. and UCHIDA M. 2010. Colonization of the polar willow Salix polaris on the early stage of succession after glacier retreat in the High Arctic, Ny−Ålesund, Svalbard. Polar Research 29: 385-390. [Crossref] [Web of Science]

  • NIELSEN N., HUMLUM O. and HANSEN B.U. 2001. Meteorological observations in 2000 at the Arctic Station,Qeqertarsuaq (69_15’N), central West Greenland.Geografisk Tidsskrift,Danish Journal of Geography 101: 155-158.

  • OWCZAREK P. 2010. Dendrochronological dating of geomorphic processes in the High Arctic. Landform Analyses 14: 45-56.

  • OWCZAREK P., NAWROT A., MIGAŁA K., MALIK I. and KORABIEWSKI B. 2014. Flood−plain re− sponses to contemporary climate change in small High−Arctic basins (Svalbard, Norway). Boreas 43 (2): 384-402. [Web of Science] [Crossref]

  • POLUNIN N. 1955. Attempted dendrochronological dating of ice Island T−3. Science 122: 1184-1186. [Crossref] [PubMed]

  • ROMUNDSET A. and BONDEVIK S. 2011. Propagation of the Storegga tsunami into ice−free lakes along the southern shores of the Barents Sea. Journal of Quaternary Science 26: 457-462. [Crossref] [Web of Science]

  • RUFFMAN A. andMURTY T. 2006. Tsunami hazards in the Arctic regions of North America, Green− land and the Norwegian Sea. In: Program and Abstracts, International Tsunami Society Third Tsunami Symposium. Honolulu, HI, May 23-25.

  • SAVILE D.B.O. 1979. Ring counts in Salix arctica from northern Ellesmere Island. Canadian Field− Naturalist 93 (1): 81-82.

  • SCHWEINGRUBER F.H. 1996. Tree rings and environment dendroecology. Haupt, Bern Stuttgart Wien: 609 pp.

  • SCHWEINGRUBER F.H. and POSCHLOD P. 2005. Growth rings in herbs and shrubs: life span, age de− termination and stem anatomy. Forest Snow and Landscape Research 79 (3): 195-415.

  • SCHWEINGRUBER F.H., HELLMANN L., TEGEL W., BRAUN S., NIEVERGELT D. and BÜNTGEN U. 2013. Evaluating the wood anatomical and dendroecological potential of arctic dwarf shrub communities. IAWA Journal 34 (4): 485-497. [Crossref] [Web of Science]

  • SZCZUCIŃSKI W. 2012. The post−depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand. Natural Hazards 60: 115-133. [Crossref] [Web of Science]

  • SZCZUCIŃSKI W., NIEDZIELSKI P., RACHLEWICZ G., SOBCZYŃSKI T., ZIOŁA A., KOWALSKI A., LORENC S. and SIEPAK J. 2005. Contamination of tsunami sediments in a coastal zone inundated by the 26 December 2004 tsunami in Thailand. Environmental Geology 49: 321-331. [Crossref]

  • UCHYTIL R.J. 1992. Salix glauca. In: Fire Effects Information System. U.S. Department of Agricul− ture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available on− line at http://www.fs.fed.us/database/feis/

  • WAGNER B., BENNIKE O., KLUG M. and CREMER H. 2007. First indication of Storegga tsunami de− posits from East Greenland. Journal of Quaternary Science 22: 321-325. [Web of Science] [Crossref]

  • WALKER D.A., GOULD W.A., MAIER H.A. and RAYNOLDS M.K. 2002. The Circumpolar Arctic Vegetation Map: AVHRR−derived base maps, environmental controls, and integrated mapping procedures. International Journal of Remote Sensing 23 (21): 4551-4570. [Crossref]

  • WILMKING M., HALLINGER M., VAN BOGAERT R., KYNCL T., BABST F., HAHNE W., JUDAY G.P., DE LUIS M., NOVAK K. and VÖLLM C. 2012. Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia 30 (3): 213-222. [Web of Science] [Crossref]

  • WOODCOCK H. and BRADLEY R.S. 1994. Salix arctica (Pall.): its potential for dendroclimatological studies in the High Arctic. Dendrochronologia 12: 11-22.

  • ZALATAN R. and GAJEWSKI K. 2006. Dendrochronological potential of Salix alaxensis from the Kuujjua River area, Western Canadian Arctic. Tree−Ring Research 62 (2): 75-82. [Crossref]

About the article

Received: 2015-02-17

Accepted: 2015-03-10

Published Online: 2015-03-25

Published in Print: 2015-03-01

Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, DOI: https://doi.org/10.1515/popore-2015-0005. Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in