Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 36, Issue 3 (Sep 2015)

Crinoids from Svalbard in the aftermath of the end−Permian mass extinction

Mariusz A. Salamon / Przemysław Gorzelak / Nils−Martin Hanken / Henrik Erevik Riise
  • Department of Geology, UiT – The Arctic University of Norway, NO−9037 Tromsø, Norway
  • Halliburton, Sperry Drilling, P.O. Box 200, NO−4065 Stavanger, Norway
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruno Ferré
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/popore-2015-0015

Abstract

The end-Permian mass extinction constituted a major event in the history of crinoids. It led to the demise of the major Paleozoic crinoid groups including cladids, disparids, flexibles and camerates. It is widely accepted that a single lineage, derived from a late Paleozoic cladid ancestor (Ampelocrinidae), survived this mass extinction. Holocrinid crinoids (Holocrinus, Holocrinida) along with recently described genus Baudicrinus (Encrinida), the only crinoid groups known from the Early Triassic, are considered the stem groups for the post-Paleozoic monophyletic subclass Articulata. Here, we report preliminary data on unexpectedly diverse crinoid faunas comprising at least four orders from the Lower Triassic (Induan and Olenekian) of Svalbard, extending their stratigraphic ranges deeper into the early Mesozoic. These findings strongly imply that the recovery of crinoids in the aftermath of the end-Permian extinction began much earlier at higher palaeolatitudes than in the central Tethys.

Keywords: Arctic; Svalbard; echinoderms; crinoids; P/T extinction; recovery

References

  • BAUMILLER T.K., SALAMON M.A., GORZELAK P., MOOI R., MESSING C.G. and GAHN F.J. 2010. Post−Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proceedings of the National Academy of Sciences of the United States of America 107: 5893-5896.Web of ScienceGoogle Scholar

  • BENTON M.J. 2005. When life nearly died: the greatest mass extinction of all time. Thames & Hudson, New York: 336 pp.Google Scholar

  • BIRKENMAJER K. and TRAMMER J. 1975. Lower Triassic conodonts from Hornsund, south Spits− bergen. Acta Geologica Polonica 25: 299-308.Google Scholar

  • BŁAŻEJOWSKI B. 2004. Shark teeth from the Lower Triassic of Spitsbergen and their histology. Polish Polar Research 25 (2): 153-167.Google Scholar

  • BRAYARD A., ESCARGUEL G., BUCHER H.,MONNET C., BRÜHWILER T., GOUDEMAND N., GALFETTI T. and GUEX J. 2009. Good genes and good luck: Ammonoid diversity and the end−Permian mass extinction. Science 325: 1118-1121.Web of ScienceGoogle Scholar

  • BRAYARD A.,VENNIN E., OLIVIER N., BYLUND K.G., JENKS J., STEPHEN D.A., BUCHER H., HOFMANN R.,GOUDEMAND N. and ESCARGUEL G. 2011. Transient metazoan reefs in the after− math of the end−Permian mass extinction. Nature Geosciences 4: 693-697.CrossrefGoogle Scholar

  • DALLMANN W.K. (ed.) 1999. Lithostratigraphic Lexicon of Svalbard. Upper Palaeozoic to Quater− nary Bedrock. Review and recommendations for nomenclature use. Norwegian Polar Institute, Tromsø: 318 pp.Google Scholar

  • FOSTER W.J. and TWITCHETT R.J. 2014. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nature Geoscience 7: 233-238.Web of ScienceCrossrefGoogle Scholar

  • GŁUCHOWSKI E. 1987. Jurassic and Early Cretaceous articulate Crinoidea from the Pieniny Klippen Belt and the Tatra Mts, Poland. Studia Geologica Polonica 94: 1-100.Google Scholar

  • GŁUCHOWSKI E. 2002. Crinoids from the Famennian of the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica 47 (2): 319-328.Web of ScienceGoogle Scholar

  • GŁUCHOWSKI E. and RACKI G. 2005. Disarticulated crinoid stems from the Devonian and Carbonifer− ous of north Devon, England. Proceedings of the Yorkshire Geological Society 55 (3): 161-172.CrossrefGoogle Scholar

  • GORZELAK P., SALAMON M.A. and BAUMILLER T.K. 2012. Predator−induced macroevolutionary trends in Mesozoic crinoids. Proceedings of the National Academy of Sciences of the United States of America 109: 7004-7007.Web of ScienceGoogle Scholar

  • GORZELAK P., BŁAŻEJOWSKI B., UCHMAN A. and HANKEN N.−M. 2013. First record of catacrinid crinoid from the Lower Permian of Spitsbergen. Polish Polar Research 34: 139-150.Web of ScienceCrossrefGoogle Scholar

  • GRUSZCZYŃSKI M.,HAŁAS S.,HOFFMAN A. andMAŁKOWSKI K. 1989.Abrachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition. Nature 337: 64-68.CrossrefGoogle Scholar

  • HAGDORN H. 1988. Ainigmacrinus calyconodalis n. g . n. sp., eine ungewöhnliche Seelilie aus der Obertrias der Dolomiten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 2: 71-96.Google Scholar

  • HAGDORN H. 2011. Triassic: the crucial period of post−Palaeozoic crinoid diversification. Swiss Journal of Palaeontology 130: 91-112.CrossrefGoogle Scholar

  • HAGDORN H., GŁUCHOWSKI E. and BOCZAROWSKI A.B. 1996. The crinoid fauna of the Diplopora Dolomite (Middle Muschelkalk, Upper Anisian) at Piekary Śląskie in Upper Silesia. Geologisch−Paläontologische Mitteilungen Innsbruck 21: 47-87.Google Scholar

  • HESS H. 2002. Remains of Saccocomids (Crinoidea: Echinodermata) from the Upper Jurassic of southern Germany. Stuttgarter Beiträge zur Naturkunde - Serie B 329: 1-57.Google Scholar

  • HESS H. and MESSING C.G. 2011. Treatise on Invertebrate Paleontology, Part T, Echinodermata 2 Revised, Crinoidea 3. University of Kansas Press, Lawrence, Kansas: xxix + 261 pp.Google Scholar

  • HOLTEDAHL O. 1911. Zur Kenntnis der Karbonablagcrungen des westlichen Spitzbergens I. Eine Fauna der Moskauer Stufe. Videnskabernes Selskabs Skrifter 10: 1-89.Google Scholar

  • HOLTERHOFF P.E. and BAUMILLER T.K. 1996. Phylogeny of the proto−articulates (ampelocrinids + basal articulates): implications for the Permo−Triassic extinction and reradiation of the Crinoidea. Paleontological Society Special Publication 8: 1-176.Google Scholar

  • HOUNSLOW M.W. and NAWROCKI J. 2008. Palaeomagnetism and magnetostratigraphy of the Permian and Triassic of Spitsbergen: a review of progress and challenges. Polar Research 27: 502-522.CrossrefWeb of ScienceGoogle Scholar

  • HOUNSLOW M.W., PETERS C., MØRK A., WEITSCHAT W. and VIGRAN J.O. 2008. Biomagneto− stratigraphy of the Vikinghøgda Formation, Svalbard (Arctic Norway), and the geomagnetic po− larity timescale for the Lower Triassic. Geological Society of America Bulletin 120: 1305-1325.CrossrefGoogle Scholar

  • JEPPSSON L., ANEHUS R. and FREDHOLM D. 1999. The optimal acetate buffered acetic acid technique for extracting phosphatic fossils. Journal of Paleontology 73: 964-972.Google Scholar

  • KRISTAN−TOLLMANN E. 1975. Die Osteokrinusfazies, ein Leithorizont von Schwebcrinoiden im Oberladin−Unterkarn der Tethys. Erdöl und Kohle, Erdgas, Petrochemie vereinigt mit Brenn− stoff - Chemie 23: 781-789.Google Scholar

  • MAXWELL E.E. and KEAR B.P. 2013. Triassic ichthyopterygian assemblages of the Svalbard archi− pelago: a reassessment of taxonomy and distribution. GFF 135: 85-94.Web of ScienceGoogle Scholar

  • MØRK A. 1994. Triassic transgressive−regressive cycles of Svalbard and other Arctic areas: a mirror of stage subdivision. In: J. Guex and A. Baud (eds) Recent developments on Triassic stratigra− phy. Mémoires de Géologie, Lausanne 22: 69-82.Google Scholar

  • MØRK A., EGOROV A.Y. and EMBRY A.F. 1994. Base Olenekian and base Anisian sequence bound− aries produced by Triassic circumpolar “synchronous” transgressions. In: D.K. Thurston and K. Fujita (eds) International conference on Arctic Margins 1992 Proceedings. OCS Study MMS 94−0040. Department of the Interior, Mineral Management Service, Anchorage, Alaska OCR Region, U.S.: 9-14.Google Scholar

  • MØRK A., EMBRY A.F. and WEITSCHAT W. 1989. Triassic transgressive−regressive cycles in the Sverdrup Basin, Svalbard, and the Barents Shelf. In: J.D. Collinson (ed.) Correlation in hydrocarbon exploration. Norwegian Petroleum Society, Graham & Trotman, London: 113-130. Google Scholar

  • MØRK A., KNARUD R. andWORSLEY D. 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In: A.F. Embry and H.R. Baikwill (eds) Arctic Geology and Geophysics. Canadian Society of Petroleum Geologists Memoir 8: 371-398.Google Scholar

  • MØRK A., ELVEBAKK G., FORSBERG A.W., HOUNSLOW M.W., NAKREM H.A., VIGRAN J.O. and WEITSCHAT W. 1999. The type section of the Vikinghøgda Formation: a new Lower Triassicunit in central Spitsbergen and eastern Svalbard. Polar Research 18: 51-82.CrossrefGoogle Scholar

  • NAKREM H.A., ORCHARD M.J., WEITSCHAT W., HOUNSLOW M.W., BEATY T.W. and MØRK A. 2008. Triassic conodonts from Svalbard and their Boreal correlations. Polar Research 27: 523-539.CrossrefWeb of ScienceGoogle Scholar

  • OJI T. and TWITCHETT R.J. 2015. The Oldest Post−Palaeozoic Crinoid and Permian-Triassic Origins of the Articulata (Echinodermata). Zoological Science 32: 211-215.CrossrefWeb of ScienceGoogle Scholar

  • RIIS F., LUNSCHIEN T., HØY T., MØRK A. and MØRK M.B. 2008. Evolution of the Triassic shelf in the northern Barents Sea region. Polar Research 27: 318-338.CrossrefWeb of ScienceGoogle Scholar

  • ROUSE G.W., JERMIIN L.S., WILSON N.G., EECKHAUT I., LANTERBECQ D., OJI T., YOUNG C.M., BROWNING T., CISTERNAS P.,HELGEN L.E., STUCKEY M. andMESSING C.G. 2013. Fixed, free and fixed: The fickle phylogeny of extant Crinoidea (Echinoderma) and their Permian-Triassic origin. Molecular Phylogenetics and Evolution 66: 161-181.Web of ScienceCrossrefGoogle Scholar

  • ROUSSEAU J. and NAKREM H.A. 2012. An Upper Jurassic Boreal echinoderm Lagerstätte from Janusfjellet, central Spitsbergen. Norwegian Journal of Geology 92: 133-161.Google Scholar

  • ROUX M., ELEAUME M., HEMERY L.G. and AMEZIANE N. 2013. When morphology meets molecular data in crinoid phylogeny: a challenge. Cahiers de Biologie Marine 54: 541-548.Google Scholar

  • SALAMON M.A. and NIEDŹWIEDZKI R. 2005. Triassic crinoids from the Tatra Mountains and their stratigraphic significance (Poland). Geologica Carpathica 57 (2): 69-77.Google Scholar

  • SIMMS M.J. 1999. Systematics, phylogeny and evolutionary history. In: H. Hess, W.I. Ausich, C.E. Brett and M.J. Simms (eds) Fossil Crinoids. Cambridge University Press, Cambridge: 31-40.Google Scholar

  • SIMMS M.J. and SEVASTOPULO G.D. 1993. The origin of articulate crinoids. Palaeontology 36: 91-109.Web of ScienceGoogle Scholar

  • STILLER F. 2000. Two new early millericrinids and an unusual crinoid of uncertain systematic position from the lower Upper Anisian (Middle Triassic) of Qingyan, southwestern China. Journal of Paleontology 74: 32-51.CrossrefGoogle Scholar

  • TWITCHETT R.J., KRYSTYN L., BAUD A.,WHEELEY J.R. and RICHOZ S. 2004. Rapid marine recovery after the end−Permianmass extinction event in the absence of marine anoxia. Geology 32: 805-808.CrossrefGoogle Scholar

  • TWITCHETT R.J. and OJI T. 2005. Early Triassic recovery of echinoderms. Comptes Rendus Palevol 4: 531-542.CrossrefGoogle Scholar

  • VIGRAN J.O.,MANGERUD G.,MØRK A.WORSLEY D. and HOCHULI P.A. 2014. Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Geological Survey of Norway Special Publication 14: 1-270.Google Scholar

  • WEBSTER G.D. and JELL P.A. 1999. New Permian crinoids from Australia. Memoirs of the Queensland Museum 43: 279-339.Google Scholar

  • WEBSTER G.D. and LANE N.G. 2007. New Permian crinoids from the Battleship Wash patch reef in southern Nevada. Journal of Paleontology 81: 951-965.Web of ScienceCrossrefGoogle Scholar

  • WEBSTER G.D., TINTORI A. and ANGIOLINI L. 2009. Permian crinoids from the Saiwan and Khuff formations, southeastern Oman. Revista Italiana di Paleontologia e Stratigrafia 115 (1): 27-48.Google Scholar

  • WIGNALL P.B., MORANTE R. and NEWTON R. 1998. The Permo−Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geological Magazine 135: 47-62.Google Scholar

  • WORSLEY D. 2008. The post−Caledonian development of Svalbard and the western Barents Sea. Polar Research 27: 298-317.CrossrefWeb of ScienceGoogle Scholar

  • Google Scholar

About the article

Received: 2015-07-06

Accepted: 2015-08-10

Published Online: 2015-09-25

Published in Print: 2015-09-01


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, DOI: https://doi.org/10.1515/popore-2015-0015.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bruno Ferré, Kaddour Mebarki, Madani Benyoucef, Loïc Villier, Luc Georges Bulot, Delphine Desmares, Houcine Boumediène Benachour, Lionel Marie, Jacques Sauvagnat, Mustapha Bensalah, Djamila Zaoui, and Mohammed Adaci
Annales de Paléontologie, 2017
[2]
Bruno Ferré, Madani Benyoucef, Djamila Zaoui, Mohammed Adaci, André Piuz, Soumia Tchenar, Christian Meister, Kaddour Mebarki, and Mustapha Bensalah
Annales de Paléontologie, 2016, Volume 102, Number 4, Page 225
[4]
Hans Hess, Walter Etter, and Hans Hagdorn
Swiss Journal of Palaeontology, 2016, Volume 135, Number 2, Page 249

Comments (0)

Please log in or register to comment.
Log in