Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …
Volume 37, Issue 1


Organic carbon and nutrients (N, P) in surface soil horizons in a non-glaciated catchment, SW Spitsbergen

Wojciech Szymański
  • Corresponding author
  • Uniwersytet Jagielloński, Instytut Geografii i Gospodarki Przestrzennej, Zakład Gleboznawstwa i Geografii Gleb, ul. Gronostajowa 7, 30-387 Kraków, Polska
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bronisław Wojtuń
  • Uniwersytet Wrocławski, Katedra Ekologii, Biogeochemii i Ochrony Środowiska, ul. Kanonia 6/8, 50-328 Wrocław, Polska
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mateusz Stolarczyk
  • Uniwersytet Jagielloński, Instytut Geografii i Gospodarki Przestrzennej, Zakład Gleboznawstwa i Geografii Gleb, ul. Gronostajowa 7, 30-387 Kraków, Polska
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janusz Siwek
  • Uniwersytet Jagielloński, Instytut Geografii i Gospodarki Przestrzennej, Zakład Hydrologii, ul. Gronostajowa 7, 30-387 Kraków, Polska
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Waścińska
  • Uniwersytet Jagielloński, Instytut Geografii i Gospodarki Przestrzennej, Zakład Gleboznawstwa i Geografii Gleb, ul. Gronostajowa 7, 30-387 Kraków, Polska
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-14 | DOI: https://doi.org/10.1515/popore-2016-0006


Organic carbon, nitrogen, and phosphorus in the soils of the High Arctic play an important role in the context of global warming, biodiversity, and richness of tundra vegetation. The main aim of the present study was to determine the content and spatial distribution of soil organic carbon (SOC), total nitrogen (Ntot), and total phosphorus (Ptot) in the surface horizons of Arctic soils obtained from the lower part of the Fuglebekken catchment in Spitsbergen as an example of a small non-glaciated catchment representing uplifted marine terraces of the Svalbard Archipelago. The obtained results indicate that surface soil horizons in the Fuglebekken catchment show considerable differences in content of SOC, Ntot, and Ptot. This mosaic is related to high variability of soil type, local hydrology, vegetation (type and quantity), and especially location of seabird nesting colony. The highest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from sites fertilized by seabird guano and located along streams flowing from the direction of the seabird colony. The content of SOC, Ntot, and Ptot is strongly negatively correlated with distance from seabird colony indicating a strong influence of the birds on the fertility of the studied soils and indirectly on the accumulation of soil organic matter. The lowest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from the lateral moraine of the Hansbreen glacier and from sites in the close vicinity of the lateral moraine. The content of Ntot, Ptot, and SOC in soil surface horizons are strongly and positively correlated with one another, i.e. the higher the content of nutrients, the higher the content of SOC. The spatial distribution of SOC, Ntot, and Ptot in soils of the Hornsund area in SW Spitsbergen reflects the combined effects of severe climate conditions and periglacial processes. Seabirds play a crucial role in nutrient enrichment in these weakly developed soils.

Keywords: Arctic; Svalbard; soil organic carbon; nitrogen; phosphorus; Cryosols


  • Bardgett R.D., Van der Wal R., Jónsdóttir I.S., Quirk H. and Dutton S. 2007. Temporal variability in plant and soil nitrogen pools in a high – Arctic ecosystem. Soil Biology and Biochemistry 39: 2129–2137.Google Scholar

  • Beyer L. and Bölter M. 2000. Chemical and biological properties, formation, occurrence and classification of Spodic Cryosols in a terrestrial ecosystem of East Antarctica (Wilkes Land). Catena 39: 95–119.Google Scholar

  • Bockheim J.G., Mazhitova G., Kimble J.M. and Tarnocai C. 2006. Controversies on the genesis and classification of permafrost-affected soils. Geoderma 137: 33–39.Google Scholar

  • Bölter M. 2011. Soil development and soil biology on King George Island, Maritime Antarctic. Polish Polar Research 32 (2): 105–116.Web of ScienceGoogle Scholar

  • Czerny J., Kieres A., Manecki M. and Rajchel J. 1993. Geological map of SW part of Wedel Jarlsberg Land, Spitsbergen 1:25000. Institute of Geology and Mineral Deposits, Cracow: 61 pp.Google Scholar

  • Dziadowiec H., Gonet S. and Plichta W. 1994. Properties of humic acids of Arctic tundra soils in Spitsbergen. Polish Polar Research 15 (1–2): 71–81.Google Scholar

  • Fritsen C.H., Grue A.M. and Priscu J.C. 2000. Distribution of organic carbon and nitrogen in surface soils in the McMurdo Dry Valleys, Antarctica. Polar Biology 23: 121–128.CrossrefGoogle Scholar

  • Gordon C., Wynn J.M. and Woodin S.J. 2001. Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist 149: 461–471.Google Scholar

  • Hugelius G., Kuhry P., Tarnocai C. and Virtanen T. 2010. Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic. Permafrost and Periglacial Processes 21: 16–29.CrossrefGoogle Scholar

  • Hugelius G., Strauss J., Zubrzycki S., Harden J.W., Schuur E.A.G., Ping C.L., Schirrmeister L., Grosse G., Michaelson G.J., Koven C.D., O’Donnell J.A., Elberling B., Mishra U., Camill P., Yu Z., Palmtag J. and Kuhry P. 2014. Improved estimates show large circumpolar stocks of permafrost carbon while quantifying substantial uncertainty ranges and identifying remaining data gaps. Biogeoscience 11: 6573–6593.Google Scholar

  • IUSS Working Group WRB 2014. World reference base for soil resources 2014. World Soil Resources Reports No. 106, FAO, Rome.Google Scholar

  • Jones M.H., Fahnestock J.T., Stahl P.D. and Welker J.M. 2000. A note on summer CO2 flux, soil organic matter, and microbial biomass from different high Arctic ecosystem types in the northwestern Greenland. Arctic, Antarctic, and Alpine Research 32: 104–106.CrossrefGoogle Scholar

  • Kabała C. and Zapart J. 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard Archipelago. Geoderma 175–176: 9–20.Web of ScienceGoogle Scholar

  • Klimowicz Z., Melke J. and Uziak S. 1997. Peat soils in the Bellsund region, Spitsbergen. Polish Polar Research 18 (1): 25–39.Google Scholar

  • Kolondra L. 1995. Werenskioldbreen and surrounding areas, Spitsbergen map 1:25 000, Svalbard, Norway. Faculty of Earth Sciences, University of Silesia, Sosnowiec and Norwegian Polar Institute, Tromsø: 1.Google Scholar

  • Krzyszowska A. 1985. Chemistry of the freshwater of the Fugleberget drainage basin. Polish Polar Research 6 (3): 341–347.Google Scholar

  • Kuhry P., Grosse G., Harden J.W., Hugelius G., Koven C.D., Ping C.-L., Schirrmeister L. and Tarnocai C. 2013. Characterisation of the permafrost carbon pool. Permafrost and Periglacial Processes 24: 146–155.CrossrefGoogle Scholar

  • Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123: 1–22.Google Scholar

  • Lindner L., Marks L., Roszczynko W. and Semil J. 1991. Age of raised marine beaches of northern Hornsund Region, South Spitsbergen. Polish Polar Research 12 (2): 161–182.Google Scholar

  • Lu G. and Wong D. 2008. An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences 34 (9): 1044–1056.Google Scholar

  • Madan N.J., Deacon L.J. and Robinson C.H. 2007. Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a High Arctic polar semidesert. Polar Biology 30: 559–570.Web of ScienceCrossrefGoogle Scholar

  • Majka J., Czerny J., Mazur S., Holm D.K. and Manecki M. 2010. Neoproterozoic metamorphic evolution of the Isbjørnhamna Group rocks from south-western Svalbard. Polar Research 29: 250–264.Google Scholar

  • Marsz A.A. 2013. Ground temperatures at Hornsund. In: A.A. Marsz and A. Styszyńska (eds) Climate and climate change at Hornsund, Svalbard. Maritime University, Gdynia: 373–380.Google Scholar

  • Marsz A.A. and Styszyńska A. 2007. Climate of the Polish Polar Station in Hornsund area – state, changes and their reasons. Wydawnictwo Akademii Morskiej, Gdynia: 376 pp. (in Polish).Google Scholar

  • McFadden J.P., Eugster W. and Chapin III F.S. 2003. A regional study of the controls on water vapor and CO2 exchange in Arctic tundra. Ecology 84: 2762–2776.CrossrefGoogle Scholar

  • Miętus M. and Filipiak J. 2004. Long-term variability of ground temperature in Hornsund (SW Spitsbergen) against a background of thermal conditions in Norway Arctic, 1978–2000. Polish Polar Studies, 30th International Polar Symposium, Gdynia: 237–250 (in Polish).Google Scholar

  • Migała K., Głowacki P. and Klementowski J. 2004. Thaw dynamics of the active layer of permafrost in the Hornsund area – SW Spitsbergen and its circumstances. Polish Polar Studies, 30th International Polar Symposium, Gdynia: 251–262 (in Polish).Google Scholar

  • Migała K., Nasiółkowski T. and Pereyma J. 2008. Topoclimatic conditions in the Hornsund area (SW Spitsbergen) during the ablation season 2005. Polish Polar Research 29 (1): 73–91.Google Scholar

  • Migała K., Wojtuń B., Szymański W. and Muskała P. 2014. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena 116: 10–18.Web of ScienceGoogle Scholar

  • Nelson D.W. and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner (eds) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series, Vol. 5. SSSA and ASA, Madison, Wisconsin: 961–1010.Google Scholar

  • Opaliński K.W. 1991. Primary production and organic matter destruction in Spitsbergen tundra. Polish Polar Research 12 (3): 419–434.Google Scholar

  • Paré M.C. and Bedard-Haughn A. 2012. Landscape-scale N mineralization and greenhouse gas emissions in Canadian Cryosols. Geoderma 189–190: 469–479.Google Scholar

  • Ping C.L., Jastrow J.D., Jorgenson M.T., Michaelson G.J. and Shur Y.L. 2015. Permafrost soils and carbon cycling. Soil 1: 147–171.Google Scholar

  • Radojević M. and Bashkin V.N. 2006. Practical environmental analysis. RCS Publishing, Cambridge: 266–362.Google Scholar

  • Sjögersten S., Van der Wal R. and Woodin S.J. 2006. Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry 80: 205–216.CrossrefGoogle Scholar

  • Skrzypek G., Wojtuń B., Richter D., Jakubas D., Wojczulanis-Jakubas K. and Samecka-Cymerman A. 2015. Diversification of nitrogen sources in various tundra vegetation types in the High Arctic. PLoS ONE 10 (9): e0136536.Google Scholar

  • Soil Survey Staff 1999. Soil Taxonomy, a basic system of soil classification for making and interpreting soil surveys, 2nd edition, Handbook No. 436. Natural Resources Conservation Service, US Department of Agriculture, Washington, DC: 869 pp.Google Scholar

  • Solheim B., Endal A. and Vigstad H. 1996. Nitrogen fixation in Arctic vegetation and soils from Svalbard, Norway. Polar Biology 16: 35–40.Google Scholar

  • Szymański W., Skiba S. and Wojtuń B. 2013. Distribution, genesis, and properties of Arctic soils: a case study from the Fuglebekken catchment, Spitsbergen. Polish Polar Research 34 (3): 289–304.Google Scholar

  • Szymański W., Skiba M., Wojtuń B. and Drewnik M. 2015. Soil properties, micromorphology, and mineralogy of Cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma 253–254: 1–11.Web of ScienceGoogle Scholar

  • Świtoniak M., Melke J. and Bartmiński P. 2014. The differences in cellulolytic activity of the Arctic soils of Calypsostranda, Spitsbergen. Polar Record 50 (2): 199–208.Web of ScienceCrossrefGoogle Scholar

  • Tarnocai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G. and Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochemical Cycles 23: GB2023.Web of ScienceGoogle Scholar

  • Welker J.M., Fahnestock J.T. and Jones M.H. 2000. Annual CO2 flux in dry and moist Arctic tundra: field responses to increases in summer temperatures and winter snow depth. Climatic Change 44: 139–150.CrossrefGoogle Scholar

  • White D.M., Garland D.S., Dai X. and Ping C.L. 2002. Fingerprinting soil organic matter in the Arctic to help predict CO2 flux. Cold Regions Science and Technology 35: 185–194.CrossrefGoogle Scholar

  • Wojtuń B., Samecka-Cymerman A., Kolon K., Kempers A.J. and Skrzypek G. 2013. Metals in some dominant vascular plants, mosses, lichens, algae, and the biological soil crust in various types of terrestrial tundra, SW Spitsbergen, Norway. Polar Biology 36: 1799–1809.CrossrefWeb of ScienceGoogle Scholar

  • Woodin S.J. 1997. Effects of acid deposition on arctic vegetation. In: S.J. Woodin and M. Marquiss (eds) Ecology of Arctic Environments. Blackwell Science, Oxford: 219–239.Google Scholar

  • Ziółek M. and Melke J. 2014. The impact of seabirds on the content of various forms of phosphorus in organic soils of the Bellsund coast, western Spitsbergen. Polar Research 33: 19986.CrossrefWeb of ScienceGoogle Scholar

  • Zubrzycki S., Kutzbach L., Grosse G., Desyatkin A. and Pfeiffer E.M. 2013. Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences 10: 3507–3524.Google Scholar

  • Zubrzycki S., Kutzbach L. and Pfeiffer E.M. 2014. Permafrost-affected soils and their carbon pools with a focus on the Russian Arctic. Solid Earth 5: 595–609.CrossrefGoogle Scholar

  • Zwolicki A., Zmudczyńska-Skarbek K.M., Iliszko L. and Stempniewicz L. 2013. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biology 36: 363–372.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-09-15

Accepted: 2015-12-14

Published Online: 2016-03-14

Published in Print: 2016-03-01

Citation Information: Polish Polar Research, Volume 37, Issue 1, Pages 49–66, ISSN (Online) 2081-8262, DOI: https://doi.org/10.1515/popore-2016-0006.

Export Citation

© 2016 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in