Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 37, Issue 3 (Sep 2016)

Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

Wojciech Szymański
  • Corresponding author
  • Jagiellonian University, Institute of Geography and Spatial Management, Department of Pedology and Soil Geography, ul. Gronostajowa 7, 30-387 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janusz Siwek
  • Jagiellonian University, Institute of Geography and Spatial Management, Department of Hydrology, ul. Gronostajowa 7, 30-387 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Waścińska
  • Jagiellonian University, Institute of Geography and Spatial Management, Department of Pedology and Soil Geography, ul. Gronostajowa 7, 30-387 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bronisław Wojtuń
  • University of Wrocław, Faculty of Biological Sciences, Department of Ecology, Biogeochemistry and Environmental Protection, ul. Kanonia 6/8, 50-328 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-12 | DOI: https://doi.org/10.1515/popore-2016-0019

Abstract

Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen) by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris), tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

Keywords: Arctic; Svalbard; texture; chemical composition; surface layer; Cryosols

References

  • BALESDENT J., CHENU C. and BALABANE M. 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research 53: 215-230.Google Scholar

  • BANNING N.C., GLEESON D.B., GRIGG A.H., GRANT C.D., ANDERSEN G.L., BRODIE E.L. and MURPHY D.V. 2011. Soil microbial community successional patterns during forest ecosystem restoration. Applied and Environmental Microbiology 77: 6158-6164.CrossrefWeb of ScienceGoogle Scholar

  • BOCKHEIM J.G. 2015. Cryopedology. Springer. Heidelberg, New York, Dordrecht, London: 177 pp.Google Scholar

  • CARSON J.K., ROONEY D., GLEESON D.B. and CLIPSON N. 2007. Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiology Ecology 61: 414-423.Web of ScienceCrossrefGoogle Scholar

  • CZERNY J., KIERES A., MANECKI M. and RAJCHEL J. 1993. Geological map of SW part of Wedel Jarlsberg Land, Spitsbergen 1:25000. Institute of Geology and Mineral Deposits, Cracow, 1 sheet + comments, 61 pp.Google Scholar

  • DUBIEL E. and OLECH M. 1992. Ornithocoprophilous plant communities on the southern slope of Ariekammen (Hornsund region, Spitsbergen). In: Landscape, Life World and Man in High Arctic. Institute of Ecology, PAS, Warszawa: 167-175.Google Scholar

  • ETZELMÜLLER B. and SOLLID J.L. 1991. The role of weathering and pedological processes for the development of sorted circles on Kvadehuksletta, Svalbard - a short report. Polar Research 9: 181-191.CrossrefGoogle Scholar

  • EWERTOWSKI M.W. and TOMCZYK A.M. 2015. Quantifi cation of the ice-cored moraines’ short-term dynamics in the high-Arctic glaciers Ebbabreen and Ragnarbreen, Petuniabukta, Svalbard. Geomorphology 234: 211-227.CrossrefGoogle Scholar

  • FUGLER S.R. 1985. Chemical composition of guano of burrowing petrel chicks (Procellariidae) at Marion Island. In: W.R. Siegfried, P.R. Condy and R.M. Laws (eds) Antarctic Nutrient cycles and food webs. Springer-Verlag, Berlin, Heidelberg: 169-172.Google Scholar

  • GEE G.W. and BAUDER J.W. 1986. Particle−size analysis. In: A. Klute (ed.) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd edition. Agronomy Monograph vol. 9. ASA−SSSA, Madison, Wisconsin: 427-445.Google Scholar

  • HINKEL K.M., PAETZOLD F., NELSON F.E. and BOCKHEIM J.G. 2001. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993-1999. Global and Planetary Change 29: 293-309.Google Scholar

  • KABAŁA C. and ZAPART J. 2009. Recent, relic and buried soils in the forefi eld of Werenskiold Glacier, SW Spitsbergen. Polish Polar Research 30: 161-178.Google Scholar

  • KABAŁA C. and ZAPART J. 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma 175-176: 9-20.Web of ScienceGoogle Scholar

  • KLIMOWICZ Z. and UZIAK S. 1996a. Soil and vegetation conditions in small valleys at southern coast of Bellsund, Spitsbergen. Polish Polar Research 17: 93-106.Google Scholar

  • KLIMOWICZ Z. and UZIAK S. 1996b. Arctic soil properties associated with micro-relief forms in the Bellsund region (Spitsbergen). Catena 28: 135-149.CrossrefGoogle Scholar

  • KLIMOWICZ Z., MELKE J., UZIAK S. and CHODOROWSKI J. 2009. Specifi city of Arctic tundra soils of Spitsbergen. Polish Journal of Soil Science 42: 97-109.Google Scholar

  • KNIGHT P.G., PATTERSON C.J., WALLER R.I., JONEs A.P. and ROBINSON Z.P., 2000. Preservation of basal-ice sediment texture in ice-sheet moraines. Quaternary Science Reviews 19: 1255-1258.CrossrefGoogle Scholar

  • KOLONDRA L. 1995. Werenskioldbreen and surrounding areas, Spitsbergen map 1:25 000, Svalbard, Norway, Copyright: Faculty of Earth Sciences, University of Silesia, Sosnowiec and Norwegian Polar Institute, Tromso, 1 sheet.Google Scholar

  • KOSAKOWSKI K., GRZELAK M., KNIOŁA A., MURAWSKI M. and KOSAKOWSKI A. 2014. The effect of probiotics on poultry dung application, reduction of mineral fertilization and yield of selected crops. Journal of Research and Applications in Agricultural Engineering 59: 125-128.Google Scholar

  • LINDNER L., MARKS L., ROSZCZYNKO W. and SEMIL J. 1991. Age of raised marine beaches of northern Hornsund Region, South Spitsbergen. Polish Polar Research 12 (2): 161-182.Google Scholar

  • LU G. and WONG D. 2008. An adaptive inverse-distance weighting spatial interpolation technique. Computers and Geosciences 34: 1044-1056.Google Scholar

  • MAJKA J., CZERNY J., MAZUR S., HOLM D.K. and MANECKI M. 2010. Neoproterozoic metamorphic evolution of the Isbjørnhamna Group rocks from south-western Svalbard. Polar Research 29: 250-264.CrossrefGoogle Scholar

  • MARSZ A.A. 2013. Ground temperatures at Hornsund. In: A.A. Marsz and A. Styszyńska (eds) Climate and climate change at Hornsund, Svalbard. Maritime University, Gdynia: 373-380.Google Scholar

  • MARSZ A.A. and STYSZYŃSKA A. 2007. Climate of the Polish Polar Station in Hornsund area - state, changes and their reasons. Wydawnictwo Akademii Morskiej, Gdynia: 376 pp. (in Polish).Google Scholar

  • MIDGLEY N.G., COOK S.J., GRAHAM D.J. and TONKIN T.N. 2013. Origin, evolution and dynamic context of a Neoglacial lateral-frontal moraine at Austre Lovénbreen, Svalbard. Geomorphology 198: 96-106.CrossrefGoogle Scholar

  • MIGAŁA K., WOJTUŃ B., SZYMAŃSKI W. and MUSKAŁA P. 2014. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena 116: 10-18.Web of ScienceCrossrefGoogle Scholar

  • MISHRA U. and RILEY W.J. 2014. Active-layer thickness across Alaska: Comparing observationbased estimates with CMIP5 Earth System Model predictions. Soil Science Society of America Journal 78: 894-902.CrossrefGoogle Scholar

  • MOORHEAD D.L., BARRETT J.E., VIRGINIA R.A., WALL D.H. and PORAZIŃSKA D. 2003. Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology 26: 567-576.CrossrefGoogle Scholar

  • MOREAU M., MERCIER D., LAFFLY D. and ROUSSEL E. 2008. Impacts of recent paraglacial dynamics on plant colonization: A case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95: 48-60.CrossrefGoogle Scholar

  • ROUSK J., BÅTH E., BROOKES P.C., LAUBER C.L., LOZUPONE C., CAPORASO J.G., KNIGHT R. and FIERER N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4: 1340-1351.Web of ScienceCrossrefGoogle Scholar

  • SALVIGSEN O., ELGERSMA A., HJORT C., LAGERLUND E., LIESTØL O. and SVENSSON N.O. 1990. Glacial history and shoreline displacement on Erdmannfl ya and Bohemanfl ya, Spitsbergen, Svalbard. Polar Research 8: 261-273.CrossrefGoogle Scholar

  • SCHIMEL D.S., BRASWELL B.H., HOLLAND E.A., MCKEOWN R., OJIMA D.S., PAINTER T.H., PARTON W.J. and TOWNSEND A.R. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles 8: 279-293.CrossrefGoogle Scholar

  • SJÖGERSTEN S., VAN DER WAL R. and WOODIN S.J. 2006. Small-scale hydrological variation determines landscape CO2 fl uxes in the high Arctic. Biogeochemistry 80: 205-216. SKIBA S., DREWNIK M. and KACPRZAK A. 2002. Soils of the western coast of Sørkappland. In: W. Ziaja and S. Skiba (eds) Sørkappland landscape structure and functioning (Spitsbergen, Svalbard). Wydawnictwo UJ, Kraków: 51-86.CrossrefGoogle Scholar

  • SKRZYPEK G., WOJTUŃ B., RICHTER D., JAKUBAS D., WOJCZULANIS-JAKUBAS K. and SAMECKA- -CYMERMAN A. 2015. Diversifi cation of nitrogen sources in various tundra vegetation types in the High Arctic. PLoS ONE 10: e0136536.Google Scholar

  • StatSoft, Inc. 2014. STATISTICA (data analysis software system), version 12. www.statsoft.com.Google Scholar

  • SZERSZEŃ L. 1965. Studies on the soils of the Arctic climate zone on the example of the south-western Spitsbergen. Zeszyty Naukowe Wyższej Szkoły Rolniczej we Wrocławiu 60: 39-82 (in Polish).Google Scholar

  • SZERSZEŃ L. 1974. Effect of bioclimatic factors on processes occurring in soils of the Sudety Mountains and Spitsbergen. Roczniki Gleboznawcze 25: 53-99 (in Polish).Google Scholar

  • SZYMAŃSKI W., SKIBA S. and WOJTUŃ B. 2013. Distribution, genesis, and properties of Arctic soils: a case study from the Fuglebekken catchment, Spitsbergen. Polish Polar Research 34: 289-304.Web of ScienceCrossrefGoogle Scholar

  • SZYMAŃSKI W., SKIBA M., WOJTUŃ B. and DREWNIK M. 2015. Soil properties, micromorphology, and mineralogy of Cryosols from sorted and unsorted patterned grounds in the Hornsund area, SW Spitsbergen. Geoderma 253-254: 1-11.Web of ScienceGoogle Scholar

  • SZYMAŃSKI W., WOJTUŃ B., STOLARCZYK M., SIWEK J. and WAŚCIŃSKA J. 2016. Organic carbon and nutrients (N, P) in surface soil horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen. Polish Polar Research 37: 49-66.CrossrefGoogle Scholar

  • ŚWITONIAK M., MELKE J. and BARTMIŃSKI P. 2014. The differences in cellulolytic activity of the Arctic soils of Calypsostranda, Spitsbergen. Polar Record 50: 199-208.CrossrefWeb of ScienceGoogle Scholar

  • THOMAS G.W. 1996. Soil pH and soil acidity. In: J.M. Bigham (ed.) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA Book Series vol. 5. SSSA and ASA, Madison, Wisconsin: 475-490.Google Scholar

  • TATUR A. 1989. Ornithogenic soils of the maritime Antarctic. Polish Polar Research 10: 481-532.Google Scholar

  • TATUR A. and MYRCHA A. 1983. Changes in chemical composition of waters running off from the penguin rookeries in the Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Polish Polar Research 4: 113-125.Google Scholar

  • TATUR A. and MYRCHA A. 1984. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Polish Polar Research 5: 31-60.Google Scholar

  • WALKER T.R. 2012. Properties of selected soils from the sub−Arctic region of Labrador, Canada. Polish Polar Research 33: 207-224.Web of ScienceCrossrefGoogle Scholar

  • WILHELM K. and BOCKHEIM J. 2016. Infl uence of soil properties on active layer thermal propagation along the western Antarctic Peninsula. Earth Surface Processes and Landforms, DOI: 10.1002/ esp.3926.CrossrefGoogle Scholar

  • WOJTUŃ B., SAMECKA-CYMERMAN A., KOLON K., KEMPERS A.J. and SKRZYPEK G. 2013. Metals in some dominant vascular plants, mosses, lichens, algae, and the biological soil crust in various types of terrestrial tundra, SW Spitsbergen, Norway. Polar Biology 36: 1799-1809.Web of ScienceCrossrefGoogle Scholar

  • WÓJCIK G. and MARCINIAK K. 1987. Ground temperature of main ecotopes of Kaffi öyra, Spitsbergen, summer 1978. Polish Polar Research 8: 25-46.Google Scholar

  • XU X., SHI Z., LI D., REY A., RUAN H., CRAINE J.M., LIANG J., ZHOU J. and LUO Y. 2016. Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma 262: 235-242.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-03-03

Accepted: 2016-07-04

Published Online: 2016-10-12

Published in Print: 2016-09-01


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, DOI: https://doi.org/10.1515/popore-2016-0019.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Evgeny Lodygin, Vasily Beznosikov, and Evgeny Abakumov
Polish Polar Research, 2017, Volume 38, Number 2
[3]
Wojciech Szymański, Janusz Siwek, Joanna Waścińska, and Bronisław Wojtuń
Polish Polar Research, 2016, Volume 37, Number 3

Comments (0)

Please log in or register to comment.
Log in