Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …
Volume 38, Issue 2


Spatial distribution of macroalgae along the shores of Kongsfjorden (West Spitsbergen) using acoustic imaging

Aleksandra Kruss
  • Corresponding author
  • Istituto di Scienze Marine-Consiglio Nazionale delle Ricerche, Arsenale – Tesa 104, Castello 2737/F, 30122 Venezia, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jarosław Tęgowski
  • Institute of Oceanography, University of Gdańsk, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Tatarek
  • Institute of Oceanology, Polish Academy of Science, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Józef Wiktor
  • Institute of Oceanology, Polish Academy of Science, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philippe Blondel
Published Online: 2017-06-27 | DOI: https://doi.org/10.1515/popore-2017-0009


The identification of macroalgal beds is a crucial component for the description of fjord ecosystems. Direct, biological sampling is still the most popular investigation technique but acoustic methods are becoming increasingly recognized as a very efficient tool for the assessment of benthic communities. In 2007 we carried out the first acoustic survey of the littoral areas in Kongsfjorden. A 2.68 km2 area comprised within a 12.40 km2 euphotic zone was mapped along the fjord’s coast using single- and multi-beam echosounders. The singlebeam echosounder (SBES) proved to be a very efficient and reliable tool for macroalgae detection in Arctic conditions. The multibeam echosounder (MBES) was very useful in extending the SBES survey range, even though it’s ability in discriminating benthic communities was limited. The final result of our investigation is a map of the macroalgae distribution around the fjord, showing 39% macroalgae coverage (1.09 km2) of investigated area between isobaths -0.70 m and -30 m. Zonation analysis showed that most of the studied macroalgae areas occur up to 15 m depth (93%). These results were confirmed by biological sampling and observation in key areas. The potential of acoustic imaging of macrophytes, and a proposed methodology for the processing of acoustic data, are presented in this paper along with preliminary studies on the acoustic reflectivity of macroalgae, also highlighting differences among species. These results can be applied to future monitoring of the evolution of kelp beds in different areas of the Arctic, and in the rest of the world.

Keywords: Arctic; Kongsfjorden; macroalgae; acoustic imaging; habitat mapping


  • ANDERSON J.T., HOLLIDAY D.V., KLOSER R., REID D.G. and SIMARD Y. 2008. Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science 65: 1004-1011.CrossrefGoogle Scholar

  • ARRIGO K.R. and VAN DIJKEN G.L. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research 116: C09011.Google Scholar

  • ATALLAH L., SMITH P.J. and BATES C.R. 2002. Wavelet analysis of bathymetric sidescan sonar data for the classifi cation of seafl oor sediments in Hopvågen Bay - Norway. Marine Geophysical Researches 23: 431-442.CrossrefGoogle Scholar

  • BALK H. and LINDEM T. 2004. Sonar4 and Sonar5-Pro. Post processing system. Operator manual v5.9.4. Lindem Data Acquisition, Norway: 485 pp.Google Scholar

  • BEUCHEL F. and GULLIKSEN B. 2008. Temporal patterns of benthic community development in an Arctic fjord (Kongsfjorden, Svalbard): results of a 24-year manipulation study. Polar Biology 31: 913-924.CrossrefGoogle Scholar

  • BEZDEK J.C. and DUNN J.C. 1975. Optimal fuzzy partitions: A heuristic for estimating the parameters in a mixture of normal distributions. IEEE Transactions on Computers 24: 835-838.CrossrefGoogle Scholar

  • BLONDEL PH. and MURTON B.J. 1997. Handbook of Seafl oor Sonar Imagery. PRAXIS-Wiley & Sons, Chichester, UK: 336 pp.Google Scholar

  • BROWN C. and BLONDEL PH. 2009. Developments in the application of multibeam sonar backscatter data for seafl oor habitat mapping. Applied Acoustics 70: 1242-1247.CrossrefGoogle Scholar

  • BROWN C.J., SMITH S.J., LAWTON P. and ANDERSON J.T. 2011. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafl oor using acoustic techniques. Estuarine, Coastal and Shelf Science 92: 502-520.CrossrefGoogle Scholar

  • CARBO R. and MOLERO A.C. 1997. Scattering strength of a Gelidium biomass bottom. Applied Acoustics 51: 343-351.CrossrefGoogle Scholar

  • COTTIER F., TVERBERG V., INALL M., SVENDSEN H., NILSEN F. and GRIFFITHS C. 2005. Water mass modifi cation in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research: 110(C12).Google Scholar

  • CRESSIE N.A.C. 1993. Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics, Iowa State University, New York, USA: 928 pp.Google Scholar

  • DE MOUSTIER C. and ALEXANDROU D. 1991. Angular dependence of 12-kHz seafl oor acoustic backscatter. The Journal of the Acoustical Society of America 90: 522-531.CrossrefGoogle Scholar

  • DUNTON K.H., REIMNITZ E. and SCHONBERG S. 1982. An Arctic Kelp Community in the Alaskan Beaufort Sea. Arctic 35: 465-484.Google Scholar

  • FALKOWSKI P.G. and RAVEN J.A. 2007. Aquatic Photosynthesis: Second Edition. Princeton University Press, Princeton: 488 pp.Google Scholar

  • FREDRIKSEN S., BARTSCH I. and WIENCKE C. 2014. New additions to the benthic marine fl ora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Botanica Marina 57: 203-216.Google Scholar

  • GATTUSO J.P., GENTILI B., DUARTE C.M., KLEYPAS J.A., MIDDELBURG J.J. and ANTOINE D. 2006. Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3: 489-513.CrossrefGoogle Scholar

  • GERLAND S. and RENNER A.H.H. 2007. Sea-ice mass-balance monitoring in an Arctic fjord. Annals of Glaciology 46: 435-442.CrossrefGoogle Scholar

  • GOMEZ I., WULFF A., ROLEDA M.Y., HUOVINEN P., KARSTEN U., QUARTINO M.L., DUNTON K. and WIENCKE C. 2009. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Botanica Marina 52: 593-608.Google Scholar

  • HARALICK R.M., STERNBERG S.R. and ZHUANG X. 1987. Image analysis using mathematical morphology. IEEE transactions on pattern analysis and machine intelligence 9: 532-550.Google Scholar


  • HOP H., WIENCKE C., VÖGELE B. and KOVALTCHOUK N. 2012. Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Botanica Marina 55: 399-414.Google Scholar

  • HUGHES CLARKE J.E. 2006. Applications of multibeam water column imaging for hydrographic survey. The Hydrographic Journal 120: 3-14.Google Scholar

  • ISAAKS E.H. and SRIVASTAVA R.M. 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York: 561 pp.Google Scholar

  • JACKSON D.R. and RICHARDSON M.D. 2007. High-Frequency Seafl oor Acoustics, Springer, New York: 616 pp.Google Scholar

  • KORTSCH S., PRIMICERIO R., BEUCHEL F., RENAUD P.E., RODRIGUES J., LONNE O.J. and GULLIKSEN B. 2012. Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences of the United States of America 109: 14052-14057.Google Scholar

  • KRAUSE-JENSEN D., KÜHL M., CHRISTENSEN P.B. and BORUM J. 2007. Benthic primary production in Young Sound, Northeast Greenland. Bioscience 58: 160-173.Google Scholar

  • KRAUSE-JENSEN D., MARBÀ N., OLESEN B., SEJR M.K., CHRISTENSEN P.B., RODRIGUES J., RENAUD P.E., BALSBY T.J.S. and RYSGAARD S. 2012. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biology 18: 2981-2994.CrossrefGoogle Scholar

  • KRUSS A., TĘGOWSKI J., WIKTOR J. and TATAREK A. 2006. Acoustic estimation of macrophytes in the Hornsund fjord, the Svalbard Archipelago. Hydroacoustics 9: 89-96.Google Scholar

  • KRUSS A., BLONDEL P., TĘGOWSKI J., WIKTOR J. and TATAREK A. 2008. Estimation of macrophytes using single-beam and multibeam echosounding for environmental monitoring of Arctic fjords (Kongsfjord, West Svalbard Island). Journal of Acoustics Society of America 123: 3213.Google Scholar

  • KRUSS A., BLONDEL PH. and TĘGOWSKI J. 2012. Acoustic properties of macrophytes: Comparison of single-beam and multibeam imaging with modeling results. 11th European Conference on Underwater Acoustics 2012. ECUA 2012, Institute of Acoustics, St. Albans: 168-175.Google Scholar

  • LEHMANN A. and LACHAVANNE J.B. 1997. GIS and remote sensing in Aquatic Botany: Introduction. Aquatic Botany 58: 195-207.CrossrefGoogle Scholar

  • LURTON X. 2002. An introduction to underwater acoustics: Principles and applications. Springer- PRAXIS, Chichester: 680 pp.Google Scholar

  • MCGONIGLE CH., GRABOWSKI J.H., BROWN C.J., WEBER T.C. and QUINN R. 2011. Detection of deep water benthic macroalgae using image-based classifi cation techniques on multibeam backscatter at Cashes Ledge, Gulf of Maine, USA. Estuarine, Coastal and Shelf Science 91: 87-101.CrossrefGoogle Scholar

  • MICHAELS W.L. 2007. Review of acoustic seabed classifi cation systems. In: J.T. Anderson, D.V. Holliday, R. Kloser, D. Reid, Y. Simard, C.J. Brown, R. Chapman, R. Coggan, R. Kieser, W.L. Michaels, A. Orlowski, J. Preston, J. Simmonds, A. Stepnowski (eds), Acoustic seabed classifi cation of marine physical and biological landscapes. ICES Cooperative Research Report 286, ICES, Copenhage n: 94-115.Google Scholar

  • NIBLACK W. 1986. An introduction to digital image processing. Prentice-Hall International Ltd, New Jersey: 215 pp.Google Scholar

  • RIEGL B., MOYER R., MORRIS L., VIRNSTEIN R. and PURKIS S.J. 2005. Distribution and seasonal biomass of drift macroalgae in the Indian River Lagoon (Florida, USA) estimated with acoustic seafl oor classifi cation (QTCView, Echo). Journal of Experimental Marine Biology and Ecology 326: 89-104.Google Scholar

  • ROLEDA M.Y., DETHLEFF D. and WIENCKE C. 2008. Transient sediment load on blades of Arctic Saccharina latissima can mitigate UV radiation effect on photosynthesis. Polar Biology 31: 765-769.CrossrefGoogle Scholar

  • SABOL B.M., MELTON R.E., CHAMBERLAIN R., DOERING P. and HAUNERT K. 2002. Evaluation of a digital echo sounder system for detection of seagrass. Estuaries 25: 133-141.CrossrefGoogle Scholar

  • SHENDEROV E.L. 1998. Some physical models for estimating scattering of underwater sound by algae. Journal of Acoustic Society of America 104: 791-800.Google Scholar

  • SVENDSEN H. 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Research 21: 133-166.Google Scholar

  • TATAREK A., WIKTOR J. and KENDALL M.A. 2012. The sublittoral macrofl ora of Hornsund. Polar Research 31: 18900.CrossrefGoogle Scholar

  • TĘGOWSKI J. and ŁUBNIEWSKI Z. 2002. Seabed characterisation using spectral moments of the echo signal. Acta Acustica/Acustica 88: 623-626.Google Scholar

  • TĘGOWSKI J., GÓRSKA N. and KLUSEK Z. 2003. Statistical analysis of acoustic echoes from underwater meadows in the eutrophic Puck Bay (southern Baltic Sea). Aquatic Living Resources 16: 215-221.CrossrefGoogle Scholar

  • VAN REIN H., BROWN C.J., QUINN R., BREEN J. and SCHOEMAN D. 2011. An evaluation of acoustic seabed classifi cation techniques for marine biotope monitoring over broad-scales (>1 km²) and meso-scales (10 m²>1 km²). Estuarine, Coastal and Shelf Science 93: 336-349.Google Scholar

  • VAN WALREE P.A., TĘGOWSKI J., LABAN C. and SIMONS D.G. 2005. Acoustic seafl oor discrimination with echo shape parameters: a comparison with the ground truth. Continental Shelf Research 25: 2273-2293.CrossrefGoogle Scholar

  • VON SZALAY P.G. and MCCONNAUGHEY R.A. 2002. The effect of slope and vessel speed on the performance of a single beam acoustic seabed classifi cation system. Fisheries Research 54: 181-194.CrossrefGoogle Scholar

  • VORONKOV A., HOP H. and GILLIKSEN B. 2013. Diversity of hard-bottom fauna relative to environmental gradients in Kongsfjorden, Svalbard. Polar Research 32: 11208.CrossrefGoogle Scholar

  • WĘSŁAWSKI J.M., KENDALL M.A., WŁODARSKA-KOWALCZUK M., IKEN K., KĘDRA M., LEGEŻYNSKA J. and SEJR M.K. 2011. Climate change effects on Arctic fjord and coastal macrobenthic diversity - observations and predictions. Marine Biodiversity 41: 71-85.Google Scholar

  • WIENCKE CH., VOGELE B., KOVALTCHOUK A. and HOP H. 2004. Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Berichte zur Polar und Meeresforschung 492: 55-62.Google Scholar

  • WIENCKE C. (ed.) 2011. Biology of polar benthic algae. Marine and Freshwater Botany. Walter de Gruyter GmbH & Co. KG, New York: 342 pp.Google Scholar

  • WIKTOR J.M., OKOLODKOV J. and VINOGRADOVA K. 1995. Atlas of the marine fl ora of southern Spitsbergen. Institute of Oceanology Polish Academy of Sciences, Gdańsk: 515 pp.Google Scholar

  • WŁODARSKA-KOWALCZUK M., KUKLIŃSKI P., RONOWICZ M., LEGEŻYNSKA J. and GROMISZ S. 2009. Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). Polar Biology 32: 897-905.CrossrefGoogle Scholar

  • WOELFEL J., SCHUMANN R., PEINE F., FLOHR A., KRUSS A., TĘGOWSKI J., BLONDEL Ph., WIENCKE CH. and KARSTEN U. 2010. Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biology 33: 1239-1253.CrossrefGoogle Scholar

  • WOLD S. 1987. Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems 2: 37-52.CrossrefGoogle Scholar

About the article

Received: 2016-11-17

Accepted: 2017-02-23

Published Online: 2017-06-27

Published in Print: 2017-06-27

Citation Information: Polish Polar Research, Volume 38, Issue 2, Pages 205–229, ISSN (Online) 2081-8262, DOI: https://doi.org/10.1515/popore-2017-0009.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in