Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
Online
ISSN
2081-8262
See all formats and pricing
More options …
Volume 38, Issue 2 (Jun 2017)

The influence of short-term cold stress on the metabolism of non-structural carbohydrates in polar grasses

Elżbieta Łopieńska-Biernat
  • Corresponding author
  • Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Pastorczyk
  • Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irena Giełwanowska
  • Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krystyna Żółtowska
  • Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Stryiński
  • Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewa Zaobidna
  • Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-27 | DOI: https://doi.org/10.1515/popore-2017-0012

Abstract

Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they can differ within a genus of the family Poaceae. The values of the investigated parameters in Poa annua differed considerably depending to the biogeographic origin of plants. At the beginning of the experiment, Antarctic plants were acclimatized in greenhouse characterized by significantly higher content of sugars, including storage reserves, sucrose and starch, but lower total protein content. After 24 h of exposure to cold stress, much smaller changes in the examined parameters were noted in Antarctic plants than in locally grown specimens. Total sugar content and sucrose, starch and glucose levels were nearly constant in P. annua, but they varied significantly. Those changes are responsible for the high adaptability of P. annua to survive and develop in highly unsupportive environments and colonize new regions.

Keywords: Arctic; Antarctic; cold stress; carbohydrates; enzymes; Poaceae; polar plants

References

  • ALBERDI M., BRAVO L.A., GUTIÉRREZ A., GIDEKEL M. and CORCUERA L. 2002. Ecophysiology of Antarctic vascular plants. Plant Physiology 115: 479-486.CrossrefGoogle Scholar

  • BAHIELDIN A., SABIR J.S.M., RAMADAN A., ALZOHAIRY A.M., YOUNIS R.A., SHOKRY A.M., GADALLA N.O., EDRIS S., HASSAN S.M., AL-KORDY M.A., KAMAL K.B.H., RABAH S., ABUZINADAH O.A. and EL-DOMYATI F.M. 2014. Control of glycogen biosynthesis under high salt stress in Arabidopsis. Functional Plant Biology 41: 87-95.CrossrefGoogle Scholar

  • BASCUŇÁN-GODOY L., URIBE E., ZỦÑIGA-FEEST A., CORCUERA L. and BRAVO L. 2006. Low temperature regulates sucrose-phosphate synthase activity in Colobantus quitensis (Kunth) Bartl. by decreasing activitation by glucose-6-phosphate. Polar Biology 29: 1011-1017.CrossrefGoogle Scholar

  • BECK E. and ZIEGLER P. 1989. Biosynthesis and degradation of starch in higher plants. Annual Review of Plant Biology 40: 95-117.CrossrefGoogle Scholar

  • BHOWMIK P.K., TAMURA K., SANADA Y., TASE K. and YAMADA T. 2006. Sucrose metabolism of perennial ryegrass in relation to cold acclimation. Zeitschrift für Naturforschung 61c: 99-104.Google Scholar

  • BJORKMAN A.D., VELLEND M., FREI E.R. and HENRY G.H.R. 2017. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Global Change Biology 23: 1540-1551.CrossrefGoogle Scholar

  • BLOCK W., SMITH L.R.I. and KENNEDY A.D. 2009. Strategies of survival and resource exploitation in the Antarctic fell fi eld ecosystem. Biology Review 84: 449-484.CrossrefGoogle Scholar

  • BONFIG K.B., GABLER A., SIMON U.K., LUSCHIN-EBENGREUTH N., HATZ M., BERGER S., MUHAMMAD N., ZEIER J., SINHA A.K. and ROITSCH T. 2010. Post-translational depression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response. Molecular Plant 3: 1037-1048.CrossrefGoogle Scholar

  • BOURNAY A.S., HEDLEY P.E., MADDISON A., WAUGH R. and MACHRAY G.C. 1996. Exon skipping induced by cold stress in a potato invertase gene transcript. Nucleic Acids Research 24: 2347-2351.CrossrefGoogle Scholar

  • BRADFORD M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry 72: 248-54.CrossrefGoogle Scholar

  • BRAVO L.A. and GRIFFITH M. 2005. Characterization of antifreeze activity in Antarctic plants. Journal of Experimental Botany 56: 1189-1196.CrossrefGoogle Scholar

  • BRAVO L.A., ULLOA N., ZỦÑIGA G.E., CASANOVA A., CORCUERA L.J. and ALBERDI M. 2001. Cold resistance in Antarctic angiosperms. Plant Physiology 111: 55-65.CrossrefGoogle Scholar

  • BUITINK J. and LEPRINCE O. 2004. Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48: 215-228.CrossrefGoogle Scholar

  • CARAWAY W.T. 1959. A stable starch substrate for the determination of amylase in serum and other body fl uids. American Journal of Clinical Pathology 32: 97-99.Google Scholar

  • CHENG W.H., TALIERCIO E.W. and CHOUREY P.S. 1999. Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 3’ untranslated region in a cell suspension culture of maize. Proceedings of the National Academy of Sciences of the United States of America 96: 10512-10517.CrossrefGoogle Scholar

  • CHIERA J.M., STREETER J.G. and FINER J.J. 2006. Ononitol and pinitol production in transgenic soybean containing the inositol methyl transferase gene from Mesembryantheum crystalinum. Plant Science 171: 647-654.CrossrefGoogle Scholar

  • CONVEY P. and SMITH R.I.L. 2006. Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology 182: 1-10.Google Scholar

  • CRESPI M.D., ZABALETA E.J., PONTIS H.G. and SALERNO G.L. 1991. Sucrose synthase expression during cold acclimation in wheat. Plant Physiology 96: 887-891.CrossrefGoogle Scholar

  • DAHLQVIST A. 1969. Assay of intestinal disaccharidases. Analytical Biochemistry 22: 99-107.CrossrefGoogle Scholar

  • DORION S., LALONDE S. and SAINI H.S. 1996. Induction of male sterility in wheat by meiotic-stage water decline is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiology 111: 137-145.CrossrefGoogle Scholar

  • FARRAR J.F. 1988. Physiological buffering. In: M. Galun (ed.) CRC Handbook of Lichenology, vol. 2. CRC Press., Boca Raton: 101-105.Google Scholar

  • GIEŁWANOWSKA I. 2005. Specyfi ka rozwoju antarktycznych roślin naczyniowych Colobanthus quitensis (Kunth) Bartl. i Deschampsia antarctica Desv. 112. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie, Olsztyn: 150 pp.Google Scholar

  • GIEŁWANOWSKA I., BOCHENEK A., GOJŁO E., GÓRECKI R., KELLMANN W., PASTORCZYK M. and SZCZUKA E. 2011. Biology of generative reproduction of Colobanthus quitensis (Kunth) Bartl. from King George Island, South Shetland Island. Polish Polar Research 32: 139-155.CrossrefGoogle Scholar

  • GIEŁWANOWSKA I., PASTORCZYK M. and KELLMANN-SOPYŁA W. 2011a. Infl uence of environmental changes on physiology and development of polar vascular plants. Papers on Global Change 18: 53-62.Google Scholar

  • GROBE C.W., RUHLAND C.T. and DAY T.A. 1997. A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperatures. Arctic, Antarctic and Alpine Research 29: 217-221.CrossrefGoogle Scholar

  • GUY C.H.L., HUBER J.L.A. and HUBER S.C. 1992. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiology 100: 502-508.CrossrefGoogle Scholar

  • HARE P.D. and CRESS W.A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation 21: 79-102.CrossrefGoogle Scholar

  • HOEKSTRA F.A., GOLOVINA E.A. and BUITINK J. 2001. Mechanisms of plant desiccation tolerance. Trends in Plant Science 6: 431-438.CrossrefGoogle Scholar

  • JANSKÁ A., MARŠÍK P., ZELENKOVÁ S. and OVESNÁ J. 2010. Cold stress and acclimation-what is important for metabolic adjustment? Plant Biology 12: 295-405.CrossrefGoogle Scholar

  • JENNINGS D.H. and LYSEK G. 1996. Fungal biology: understanding the fungal lifestyle. BIOS Scientifc Publishers, Guildford, UK: 156 pp.Google Scholar

  • KELLMANN-SOPYŁA W., LAHUTA L.B., GIEŁWANOWSKA I. and GÓRECKI R.J. 2015. Soluble carbohydrates in developing and mature diaspores of polar Caryophyllaceae and Poaceae. Acta Physiologiae Plantarum 37: 118.CrossrefGoogle Scholar

  • KOSTER K.L. 1991. Glass formation and desiccation tolerance in seeds. Plant Physiology 96: 302-304.CrossrefGoogle Scholar

  • KRATSCH H.A. and WISE R.R. 2000. The ultrastructure of chilling stress. Plant Cell and Environment 23: 337-350.CrossrefGoogle Scholar

  • LACKEY K.H., POPE P.M. and JOHNSON M.D. 2003. Expression of 1L-moy-inositol-1-phosphate synthase in organelles. Plant Physiology 132: 2240-2247.Google Scholar

  • LAPOLLA A., TRALDI P. and FEDELE D. 2005. Importance of measuring products of non-enzymatic glycation of proteins. Clinical Biochemistry 38: 103-115.CrossrefGoogle Scholar

  • LEPRINCE O., HENDRY G.A.F. and MCKERSIE B.D. 1993. The mechanisms of desiccation tolerance in developing seeds. Seed Science Research 3: 231-246.CrossrefGoogle Scholar

  • LINEBERGER D.R. and STEPONKUS P.L. 1980. Cryoprotection by glucose, sucrose, and raffi nose to chloroplast thylakoids. Plant Physiology 65: 298-304.CrossrefGoogle Scholar

  • MORSE E.E. 1947. Anthrone in estimating low concentration of sugar. Analytical Chemistry 19: 10-12.CrossrefGoogle Scholar

  • NEWSTED W.J., CHIBBAR R.N. and GEORGES F. 1991. Effect of low temperature stress on the expression on sucrose synthase in spring and winter wheat plants. Development of monoclonal antibody against wheat germ sucrose synthase. Biochemistry and Cell Biology 69: 36-41.CrossrefGoogle Scholar

  • OLAVE-CONCHA N., BRAVO L.A., RUIZ-LARA S. and CORCUERA L.J. 2005. Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv. Polar Biology 28: 506-513.CrossrefGoogle Scholar

  • OLECH M., WĘGRZYN M., LISOWSKA M., SŁABY A. and NAGIEL P. 2011. Contemporary changes in vegetation of Polar Regions. Papers on Global Change 18: 35-51.Google Scholar

  • PARNIKOZA I., CONVEY P., DYKYY I., TROKHYMETS V., MILINEVSKY G., TYSHCHENKO O., INOZEMTSEVA D. and KOZERETSKA I. 2009. Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Global Change Biology 15: 1685-1693.CrossrefGoogle Scholar

  • PARNIKOZA I., KOZERETSKA I. and KUNAKH V. 2011. Vascular Plants of the Maritime Antarctic: Orgin and Adaptation. American Journal of Plant Sciences 2: 381-395.CrossrefGoogle Scholar

  • PASTORCZYK M., GIEŁWANOWSKA I. and LAHUTA L.B. 2014. Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling. Acta Physiologiae Plantarum 36: 1771.CrossrefGoogle Scholar

  • PIOTROWICZ-CIEŚLAK A.I., GIEŁWANOWSKA I., BOCHENEK A., LORO P. and GÓRECKI R.J. 2005. Carbohydrates in Colobanthus quitensis and Deschampsia antarctica. Acta Societatis Botanicorum Poloniae 74: 209-217.CrossrefGoogle Scholar

  • PROELS R.K. and HÜCKELHOVEN R. 2014. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Molecular Plant Pathology 15: 858-864.CrossrefGoogle Scholar

  • RAUSCH T. and GREINER S. 2004. Plant protein inhibitors of invertases. Biochimica et Biophysica Acta 1696: 253-261.Google Scholar

  • REYES M.A., CORCEUERA L.J. and CARDEMIL L. 2003. Accumulation of HSP70 in Deschampsia antarctica Desv. leaves under thermal stress. Antarctic Science 15: 345-352.CrossrefGoogle Scholar

  • REYES-DIAZ M., ULLOA N., ZỦÑIGA-FEEST A., GUTIERREZ A., GIDEKEL M., ALBERDI M., CORCUERA L.J. and BRAVO L.A. 2006. Arabidopsis thaliana avoids freezing by supercooling. Journal of Experimental Botany 57: 3687-3696.CrossrefGoogle Scholar

  • ROITSCH T. and GONZALEZ M.C. 2004. Function and regulation of plant invertases: sweet sensation. Trends in Plant Science 9: 606-613.CrossrefGoogle Scholar

  • ROJO E., ZOUHAR J., CARTER C., KORALEVA V. and RAIKHEL N.V. 2003. A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100: 7389-7394.CrossrefGoogle Scholar

  • ROLLAND F., BAENA-GONZALEZ E. and SHEEN J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review Plant Biology 57: 675-709.CrossrefGoogle Scholar

  • SOLHAUG K.A. and AARES E. 1994. Remobilization of fructans in Phippsia algida during rapid infl orescence development. Plant Physiology 91: 219-225.CrossrefGoogle Scholar

  • SÖLLING H. and ESSMAN V. 1975. A sensitive method of glycogen determination in the presence of interfering substances utilizing the fi lter-paper technique. Analytical Biochemistry 68: 664-668.CrossrefGoogle Scholar

  • SUNG S.J.S., XU D.P., and BLACK C.C. 1989. Identifi cation of actively fi lling sucrose sinks. 1. Plant Physiology 89: 1117-1121.CrossrefGoogle Scholar

  • TARAN N.Y.U., STOROZHENKO V.O., SVIETLOVA N.B. and TOPCHIY N.M. 2012. Lipids and pigment- protein complexes of photosynthetic apparatus of Deschampsia antarctica Desv. Plants under UV-B radiation. Biopolymers Cell 28: 39-43.CrossrefGoogle Scholar

  • VAN DEN ENDE W. and VALLURU R. 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? Journal of Experimental Botany 60: 9-18.Google Scholar

  • VARGAS W., CUMINO A. and SALERNO G.L. 2003. Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta 216: 951-960.Google Scholar

  • VECCHIA F.D., ASMAR T., CALAMASSI R. and RASCIO C.V. 1998. Morphological and ultrastructural aspects of dehydratation and rehydratation in leaves of Sporobolus stapfi anus. Plant Growth Regulation 24: 219-228.CrossrefGoogle Scholar

  • XIONG F.S., MUELLER E.C. and DAY T.A. 2000. Photosynthesis and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. American Journal of Botany 87: 700-710.CrossrefGoogle Scholar

  • ZỦÑIGA G.E., ALBERDI M. and CORCUERA L.J. 1996. Non-structural carbohydrates in Deschampsia antarctica Desv. from South Shetland Islands, Maritime Antarctic. Environmental Experimental Botany 36: 393-398.CrossrefGoogle Scholar

  • ZỦÑIGA-FEEST A., BASCUÑÁN-GODOY L., REYES-DIAZ M., BRAVO L.A. and CORCUERA L.J. 2009. Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae)? Polar Biology 32: 583-591.Google Scholar

About the article

Received: 2017-01-23

Accepted: 2017-02-14

Published Online: 2017-06-27

Published in Print: 2017-06-27


Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, DOI: https://doi.org/10.1515/popore-2017-0012.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in