Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Polish Polar Research

The Journal of Committee on Polar Research of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.636
5-year IMPACT FACTOR: 1.121

CiteScore 2016: 1.20

SCImago Journal Rank (SJR) 2015: 0.556
Source Normalized Impact per Paper (SNIP) 2015: 0.645

Open Access
See all formats and pricing
More options …
Volume 38, Issue 3 (Sep 2017)


Soil polychemical contamination on Beliy Island as key background and reference plot for Yamal region

Evgeny Abakumov
  • Corresponding author
  • Department of Applied Ecology, Saint-Petersburg State University, 16 Line of Vasilyevsky Island, Saint Petersburg, 199178, Russian Federation
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Georgy Shamilishviliy
  • Department of Applied Ecology, Saint-Petersburg State University, 16 Line of Vasilyevsky Island, Saint Petersburg, 199178, Russian Federation
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey Yurtaev
Published Online: 2017-09-16 | DOI: https://doi.org/10.1515/popore-2017-0020


Background concentrations of main trace elements and polycyclic aromatic hydrocarbons (PAHs) were investigated in pristine soils of the Beliy Island situated in the Kara Sea, Yamal autonomous region, North-West Siberia, Russia. Belyi Island is considered as reference landscpae for further investigation of soil polychemical contamination of the Yamal region. Three plots with different functional load (mature ecosystem, occasionally and permanently affected plots) were investigated with aim to evaluate the trend of long term polychemical effect on Stagnic Cryosols – benchmark soil type of the Yamal region. Accumulation of trace elements was not fixed in all soils investigated due to absence of direct sources of heavy metals on the territory of the Beliy Island. At the same time, there were essential alterations of PAHs fractional composition and content due to pronounced accumulation of the petroleum products combustion in the vicinity of the permanent meteorological station and former seasonal field base. The most intensive and statistically significant accumulation was noted for phenanthrene, anthracene, benzo[k]fluoranthene and benzo[a]pyrene. This indicates accumulation of the PAHs in soils, affected by the anthropogenic activity on the meteorological station. The most pronounced differences were revealed for the superficial layer of 0–5 cm. Deeper horizons of soil did not show accumulation of contaminants. Data obtained can be used for organization of further monitoring of contamination of soils and landscapes in Yamal as developing and industrial region.

Keywords: Arctic; Yamal; soil contamination; reference landscapes; trace elements; polycyclic aromatic compounds


  • Abakumov E. and Tomashunas V. 2016. Electric resistivity of soils and upper permafrost layer of the Gydan Peninsula. Polarforschung 86(1): 27–34.Google Scholar

  • Abakumov E.V., Tomashunas V.M., Lodygin E.D., Gabov D.N., Sokolov V.T., Krylenkov V.A. and Kirtsideli I.Y. 2015. Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic. Eurasian Soil Science 48(12): 1300–1305.Google Scholar

  • ACIA. 2005. Arctic climate impact assessment. Cambridge University Press, Cambridge: 1042 pp.Google Scholar

  • Akeredolu F.A., Barrie L.A., Olson M.P., Oikawa K.K., Pacyna J.M. and Keeler G.J. 1994. The flux of anthropogenic trace metals into the Arctic from the mid-latitudes in 1979/80. Atmospheric Environment 28: 1557–1572.CrossrefGoogle Scholar

  • Alekseev I.I., Abakumov E.V., Shamilishvili G.A. and Lodygin E.D. 2016. Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous Okrug. Gigiena i Sanitariya 95(9): 818–821 (in Russian).Google Scholar

  • Alekseev I., Kostecki J. and Abakumov E. 2017. Vertical electrical resistivity sounding (VERS) of tundra and forest tundra soils of Yamal region. International Agrophysics 31(1): 1–8.CrossrefGoogle Scholar

  • Alyabina I.O., Androkhanov V.A., Vershinin V.V., Volkov S.N., Ganzhara N.F., Dobrovol’skiy G.V., Ivanov A.V., Ivanov A.L., Ivanova YE.A., Il’in L.I., Karpachevskiy M.L., Kashtanov A.N., Kiryushin V.I., Kolesnikova V.M., Kolesnikova L.G., Loyko P.F., Manylov I.YE., Marechek M.S., Makhinova A.F., Molchanov E.N., Prokhorov A.N., Pyagay E.T., Rozhkov V.A., Rybal’skiy N.N., Savin I.YU., Samoylova N.S., Sapozhnikov P.M., Sizov V.V., Stolbovoy V.S., Sukhanov P.A., Urusevskaya I.S., Chochayev A.KH., Sheremet B.V., Shoba S.A. and Yakovlev A.S. 2014. Unified State Register of Russian soil resources. Version 1.0. The collective monograph. Pochvennyy in-t im. V.V. Dokuchayeva Rossel’khozakademii, Moscow: 768 pp. (in Russian).Google Scholar

  • Antsibor J., Zubriskiy S., Eshenbach A., Kutzbach L., Bolshiyanov D. and Preifer E.-M. 2014. Trace metals distribution in pristine permafrost-affected soils of the Lena river delta and its hinterland, Northern Siberia, Russia. Biogeosciences 11: 1–15.CrossrefGoogle Scholar

  • Barrie L.A. 1985. Five years of chemistry observations in the Canadian Arctic. Atmosperic Environment 19: 1995–2010.Google Scholar

  • Barrie L.A., Gregor D., Hargrave B., Lake R., Muir D., Shearer R., Tracey B. and Bildeman T. 1992. Arctic contaminants: sources, occurrence and pathways. Science of Total Environment 122: 1–74.Google Scholar

  • Behymer T.D. and Hites R.A. 1985. Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates. Environmental Science & Technology 19(10): 1004–1006.Google Scholar

  • Beznosikov V.A. and Lodygin E.D. 2014. Hydrocarbons in the background soils of the southern-and middle-taiga subzones of the Komi Republic. Eurasian Soil Science 47(7): 682–686.CrossrefGoogle Scholar

  • Beznosikov V.A., Lodygin E.D. and Kondratenok B.M. 2007. Assessment of background concentrations of heavy metals in soils of the northeastern part of European Russia. Eurasian Soil Science 40: 949–955.CrossrefGoogle Scholar

  • Budzinski H., Jones I., Bellocq J., Pierard C. and Garrigues P.H. 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry 58: 85–97.Google Scholar

  • Choi H.G., Moon H.B., Choi M., Yu J. and Kim S.S. 2010. Mussel watch program for organic contaminants along the Korean coast, 2001–2007. Environmental Monitoring and Assessment 169: 473–474.Google Scholar

  • Druzhinin A.N., Idrisov I.R. and Marshinin A.V. 2015. The experience of mapping the Arctic tundra landscape on the example of northwestern part of Beliy Isalnd (Kara Sea). Geoinformatsionnoye kartografirovaniye v regionakh Rossii: materialy VII Vserossiyskoy nauchno-prakticheskoy konferentsii Voronewzh: 46–54 (in Russian).Google Scholar

  • Ejarque E. and Abakumov E. 2016. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 7(1): 153–165.CrossrefGoogle Scholar

  • Eschenbach A., Kästner M., Bierl R., Schaefer G. and Mahro B. 1994. Evaluation of a new, effective method to extract polycyclic aromatic hydrocarbons from soil samples. Chemosphere 28(4): 683–692.CrossrefGoogle Scholar

  • Eschenbach A., Wienberg R. and Mahro B. 1998. Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environmental Science & Technology 32(17): 2585–2590.Google Scholar

  • Forstner U. 1990. Inorganic sediment chemistry and elemental speciation. In: R. Baudo, J.P. Giesy and H. Muntau (eds.) Sediments: Chemistry and Toxicity of In-Place Pollutants. Lewis Publishers, Boca Raton: 61–105.Google Scholar

  • Gabov D.N., Beznosikov V.A. and Kondratenko B.M. 2007. Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils. Eurasian Soil Science 40(3): 256–264.CrossrefGoogle Scholar

  • Gabov D.N., Beznosikov V.A. and Kondratenko B.M. and Yakovleva E.V. 2008. Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils. Eurasian Soil Science 41: 1180–1188.CrossrefGoogle Scholar

  • Goryachkin S.V. 2010. Soil Cover of the North (Patterns, Genesis, Ecology, Evolution). Publishing house GEOS, Moscow: 414 p.Google Scholar

  • GN 2006. Maximum permissible concentrations of chemical substances in soils. (in Russian). FSE Research Institute of Human Ecology and Environmental Health named after L.N. Sysin RAMS. http://docs.cntd.ru/document/901966754

  • GN 2009. Approximate permissible concentrations of chemical substances in soils. (in Russian). FSE Research Institute of Human Ecology and Environmental Health named after L.N. Sysin RAMS. http://docs.cntd.ru/document/902163355

  • Haritash A.K. and Kaushik C.P. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazard Materials 169(1): 1–15.Google Scholar

  • Hudson L.N., Newbold T., Contu S., Hill S.L., Lysenko I., De Palma A. and Choimes A. 2014. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution 4(24): 4701–4735.Google Scholar

  • Hudson L.N., Newbold T., Contu S., Hill S.L., Lysenko I., De Palma A. and Booth H. 2017. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecology and Evolution 7(1): 145–188.CrossrefGoogle Scholar

  • Hwang H.M., Wade T.L. and Sericano J.L. 2003. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmospheric Environment 37(16): 2259–2267.Google Scholar

  • Johnsen A.R., Wick L.Y. and Harms H. 2005. Principles of microbial PAH-degradation in soil. Environmental pollution 133(1): 71–84.Google Scholar

  • Kaverin D.A., Pastukhov A.V. and Majtova G.G. 2014. Temperature regime of the tundra soils and underlaying permafrost (Northeast European Russia). Kriosfera Zemli 18(3): 23–31 (in Russian).Google Scholar

  • Kimble J.M. (ed.) 2004. Cryosols: Permafrost-affected Soils. Springer-Verlag, Berlin: 726 pp.Google Scholar

  • Khitun O. and Rebristaya O. 1997. The specific of the compound of species colonizing disturbed habitats in Central Yamal. In: E.G. Kuznetsova (ed.) Development of the North and problems of recultivation. Proceedings of the III international conference 1996 May 27–31; St. Petersburg, Syktuvkar: 132–141. (in Russian).Google Scholar

  • Kotlyakov V. and Khromova T. 2002. In: V. Stolbovoi and I. McCallumm (eds) Land Resources of Russia Laxenburg, Austria, International Institute for Applied Systems Analysis and the Russian Academy of Science, CD-ROM, Distributed by the National Snow and Ice Data Center, Boulde.Google Scholar

  • Lodygin E., Beznosikov V., Abakumov E.V. 2017. Humic substances elemental composition of selected taiga and tundra soils Russian European North. Polish Polar Research 38: 125–147.Google Scholar

  • Macaskill N.D., Walker T.R., Oakes K. and Walsh M. 2016. Forensic assessment of polycyclic aromatic hydrocarbons at the former Sydney Tar Ponds and surrounding environment using fingerprint techniques. Environmental Pollution 212: 166–177.Google Scholar

  • Mackay D. and Hickie B. 2000. Mass balance model of source apportionment, transport 482 and fate of PAHs in Lac Saint Louis, Quebec. Chemosphere 41(5): 681–692.Google Scholar

  • Makarova O.L., Ermilov S.G., Yurtaev A.A. and Mansurov R.I. 2015. The first data on the soil mites (Acari) of the arctic Belyi Island (Northern Yamal, the Kara sea). Entomological Review 6: 805–810.Google Scholar

  • Masclet P., Bresson M.A. and Mouvier G. 1987. Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions. Fuel 66(4): 556–562.CrossrefGoogle Scholar

  • Mazharov A.V. 2012. Rehabilitation of the Beliy Island – one of the priorities of the management of the Yamal-Nenets Autonomous District. Arkticheskiye vedomosti 3: 134–139 (in Russian).Google Scholar

  • Moskovchenko D.V. 1998. Oil and gas development and environmental pollution: Ecologico-geochemical analysis of Tyumen oblast. Federal’noye gosudarstvennoye unitarnoye predpriyatiye “Akademicheskiy nauchno-izdatel’skiy, proizvodstvenno-poligraficheskiy i knigorasprostranitel’skiy tsentr”, Nauka. Novosibirsk: 112 pp. (in Russian).Google Scholar

  • Moskovchenko D.V. 2011. Biogeochemical structure of cryogenic landscapes of Western Siberia as an indicator of environmental status and stability. Kriosfera Zemli 4: 29–32 (in Russian).Google Scholar

  • Moskovchenko D.V. 2013. Ecogeochemistry oil and gas regions of Western Siberia. Akademicheskoye izdatel‘stvo «Geo». Novosibirsk: 259 p. (in Russian).Google Scholar

  • Muller G. 1979. Schwermetalle in den sediment des Rheins, Veranderungem Seit 1971. Umschau, 79: 778–783.Google Scholar

  • Nikitina M., Popova L., Korobicina J., Efremova O., Trofimova A., Nakvasina E. and Volkov A. 2015. Environmental Status of the Arctic Soils. Journal of Elementology 20: 643–651.Google Scholar

  • Park K.S., Sims R.C. and Dupont R.R. 1990. Transformation of PAHs in soil systems. Journal of Environmental Engineering 116: 632–640.Google Scholar

  • PND F 16.1:2.3:3.11-98. 1998. Quantitative Chemical Analysis of Soils: Procedure for Measuring the Content of Metals in Solid Bodies by Inductively Coupled Plasma Spectrometry (in Russian).Google Scholar

  • PND F 16.1: 2.21-98. 1998. Methods of measurement of mass fraction of oil in the samples of soil and ground by fluorimetric method using liquid analyzer «Fluorat-02.» M. (in Russian).Google Scholar

  • PND F 16.1:2.2:2.3:3.62-09. 2009. Quantitative chemical analysis of soils. A method for measuring of the mass fractions of polycyclic aromatic hydro carbons in soils, bottom sediments, sediments of waste waters, and industrial wastes by high performance liquid chromatography (in Russian).Google Scholar

  • Rebristaya O.V. 2013. Flora of Yamal Peninsula. LETI, Sankt-Peterburg: 311 pp. (in Russian).Google Scholar

  • Rebristaya O.V. and Khitun O.V. 1997. Restoration potential of the Yamal flora. In: E.G. Kuznetsova (ed.) Development of the North and problems of recultivation. Proceedings of the III international conference 1996 May 27–31; St. Petersburg, Syktuvkar: 100–107 (in Russian).Google Scholar

  • Rovinsky F., Pastuchov B., Bouyvolov Y. and Burtseva L. 1995. Present day state of background pollution of the natural environment in the Russian Arctic in the region of the Ust-Lena Reserve. Science of Total Environment. 160/161: 193–199.Google Scholar

  • Shishov L.L., Tonkonogov V.D., Lebedeva I.I. and Gerasimova M.I. 2004. Classification and diagnostics of Russian soils. Oykumena, Smolensk: 341 pp. (in Russian).Google Scholar

  • SanPiN 42-128-4433-87. 1987. Sanitary norms for available concentrations of chemical compounds in soils (in Russian). http://www.gosthelp.ru/home/download.php?view.4439

  • Slagoda A., Leibman M.O., Khomutova V. and Orekhov P.T. 2013. Cryolithologic construction of the first terrace at Bely Island, Kara Sea (part 1). Kriosfera Zemli 4: 11–21 (in Russian).Google Scholar

  • Thomas D.J., Tracey B., Marshall H. and Norstrom R.J. 1992. Arctic terrestrial ecosystem contamination. Science of Total Environment 122: 135–164.Google Scholar

  • Tomashunos V.M. and Abakumov E.V. 2014. The content of heavy metals in soils of the Yamal Peninsula and the Bely Island. Gigiena i sanitaria 93 (6): 26–31 (in Russian).Google Scholar

  • Trofimova I.E. and Balybina A.S. 2014. Classification of climates and climatic regionalization of the West-Siberian plain. Geography and Natural Resources 35(2): 114–122.Google Scholar

  • US EPA. 1996a. Method 8310: Polynuclear Aromatic Hydrocarbons. In: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; Third Edition; Final Update 3-A. National Service Center for Environmental Publications (NSCEP) of the US Environmental Protection Agency, Washington DC: Office of Health and Environmental Assessment. Revision 0. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=50000U6E.txt. Accessed 20 April 2015.

  • US EPA. 1996b. Method 3550b: Ultrasonic extraction. In: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; Third Edition; Final Update 3-A. National Service Center for Environmental Publications (NSCEP) of the US Environmental Protection Agency, Washington DC: Office of Health and Environmental Assessment. Revision 2. http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=50000U6E.txt. Accessed 20 April 2015.

  • US EPA. 1996c. Method 3630c: Silica Gel Cleanup. In: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; Third Edition; Final Update 3-A. National Service Center for Environmental Publications (NSCEP) of the US Environmental Protection Agency, Washington DC: Office of Health and Environmental Assessment. Revision 3. http://www3.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/3630c.pdf. Accessed 20 April 2015.

  • Vlasov D.Y., Abakumov E.V., Tomashunas V.M., Krylenkov V.A. and Zelenskaya M.S. 2014. Mycobiota of soil and anthropogenic substrates of the Yamal Peninsula. Gigiena i sanitariia 5: 49–51 (in Russian).Google Scholar

  • Walker T.R. 2012. Properties of selected soils from the sub−Arctic region of Labrador, Canada. Polish Polar Research 33(3): 207–224.Google Scholar

  • Walker T.R., Young S.D., Crittenden P.D. and Zhang H. 2003a. Anthropogenic metal enrichment of snow and soil in north-eastern European Russia. Environmental Pollution 121: 11–21.Google Scholar

  • Walker T.R., Crittenden P.D. and Yound S.D. 2003b. Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia. Environmental Pollution 125(3): 401–412.Google Scholar

  • Walker T.R., Habeck J.O., Karjalainen T.P., Virtanen T., Solovieva N., Jones V. and Patova E. 2006. Perceived and measured levels of environmental pollution: interdisciplinary research in the subarctic lowlands of northeast European Russia. AMBIO: A Journal of the Human Environment 35(5): 220–228.CrossrefGoogle Scholar

  • Walker T.R., Crittenden P.D., Dauvalter V.A., Jones V., Kuhry P., Loskutova O. and Pystina T. 2009. Multiple indicators of human impacts on the environment in the Pechora Basin, north-eastern European Russia. Ecological indicators 9(4): 765–779.Google Scholar

  • Wang R. and Cadman P. 1998. Soot and PAH production from spray combustion of different hydrocarbons behind reflected shock waves. Combustion and Flame 112(3): 359–370.Google Scholar

  • WHO/IPCS. 1998. Environmental Health Criteria 202: Selected Non-Heterocyclic Polycyclic Aromatic Hydrocarbon. International Program on Chemical Safety, United Nations Environmental Program, World Health Organization. Geneva.Google Scholar

  • Wild S.R. and Jones K.C. 1995. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental pollution 88(1): 91–108.Google Scholar

  • Yunker M.B., Macdonald R.W., Vingarzan R., Mitchell R.H., Goyette D. and Sylvestre S. 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33(4): 489–515.CrossrefGoogle Scholar

About the article

Received: 2017-03-08

Accepted: 2017-07-11

Published Online: 2017-09-16

Published in Print: 2017-09-01

Citation Information: Polish Polar Research, ISSN (Online) 2081-8262, DOI: https://doi.org/10.1515/popore-2017-0020.

Export Citation

© 2017 Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in