Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


CiteScore 2016: 0.20

SCImago Journal Rank (SJR) 2016: 0.138
Source Normalized Impact per Paper (SNIP) 2016: 0.217

Open Access
Online
ISSN
1407-009X
See all formats and pricing
More options …
Volume 62, Issue 6 (Jan 2008)

Issues

Pancreatic Islet Transplantation and Regeneration for Diabetes mellitus Treatment

Dmitry Babarykin / Vizma Nikolajeva / Daina Eze / Diana Amerika
  • Centre of Transplantology, Pauls Stradiņš Clinical University Hospital, Pilsoņu 13, Riga, LV-1002, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-04-02 | DOI: https://doi.org/10.2478/v10046-009-0005-x

Pancreatic Islet Transplantation and Regeneration for Diabetes mellitus Treatment

The incidence of diabetes mellitus due to different causes (heredity, unhealthy food, sedentary life style, etc.) is increasing both in Latvia and worldwide every year. In almost all cases insulin therapy must be administered. However, the latest modern technologies promote the development of new and alternative treatments of diabetes mellitus. One of them, the procedure of islet transplantation is comparatively simple and relatively non-invasive in contrast to whole pancreas transplantation. It is considered as a perspective strategy in the treatment of patients with type 1 diabetes, when the insulin-producing beta cells have been destroyed and blood glucose level is above the normal range (hyperglycaemia). Successful outcome of clinical islet transplantation has been shown in several islet transplantation centres in Europe and elsewhere, particularly in the last seven years, using corticoid-free immunosuppression regimen. Islets are isolated by a collagenase-based digestion of donor pancreas with a "Ricordi" chamber, followed by a purification step in a Ficoll-based continuous density gradient. This review discusses the islet transplantation procedure and deals with the methods of islet isolation. Importance of islet preparations and engraftment quality, as well as clinical outcome and its indications also are described. The present status of islet regeneration including beta cells neogenesis and regeneration therapy strategies also are presented. The experience of Latvian scientists in islet transplantation procedure is briefly described.

Aizkuņga Dziedzera Saliņu Transplantācija UN Regenerācija Cukura Diabēta Ārstēšanai

Saslimstība ar cukura diabētu dažādu iemeslu dēļ (iedzimtība, neveselīgs uzturs, mazkustīgs dzīves veids u.c.) pēdējos gados palielinās gan Latvijā, gan visā pasaulē. Gandrīz vienmēr šiem pacientiem ir jāuzsāk insulīna terapija. Tajā pašā laikā jaunākās modernās tehnologijas ir sekmējušas jaunu, alternatīvu metožu ieviešanu arī cukura diabēta ārstēšanā. Viena no tām - Langerhansa saliņu transplantēšana, kura ir salīdzinoši vienkārša un relatīvi maz invazīva, salīdzinājumā ar visa aizkuņga dziedzera transplantēšanu. Šī metode varētu būt īpaši piemērota 1. tipa diabēta pacientu ārstēšanā, kad insulīnu ražojošās beta šūnas ir gājušas bojā un glikozes līmenis asinīs ir palielināts (hiperglikēmija). Klīniska saliņu transplantēšana, īpaši pēdējos gados, imūnsupresijai neizmantojot kortikosteroīdus, ir bijusi sekmīga vairākos saliņu transplantēšanas centros gan Eiropā, gan arī citur pasaulē. Saliņu izolēšanas pamatā ir donora aizkuņga dziedzera enzimātiska sadalīšana ar kolagenāzi "Rikordi" kamerā, kam seko attīrīšanas procedūra Fikola gradienta centrifugācijā. Rakstā apkopota informācija par saliņu transplantēšanas un izolēšanas problēmām un sasniegumiem, kā arī klīniskajiem rezultātiem. Apskatīta arī beta šūnu regenerācija, ieskaitot to neogenēzi. Sniegts īss pārskats par Latvijas zinātnieku pieredzi saliņu transplantēšanā.

Keywords: pancreas; islets of Langerhans; diabetes mellitus; transplantation; regeneration

  • Ackermann, A.M., Gannon, M. (2007). Molecular regulation of pancreatic β-cell mass development, maintenance, and expansion. J. Mol. Endocrinol., 38(1-2), 193-206.Google Scholar

  • Amiel, S.A., Rela, M. (2005). Live organ-donation for islet transplantation. Lancet, 365, 1603-1604.Google Scholar

  • Bach, J.F. (1994). Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr. Rev., 15(4), 516-542.PubMedGoogle Scholar

  • Beger, C., Cirulli, V., Vajkoczy, P., Halban, P.A., Menger M.D. (1998). Vascularization of purified pancreatic islet-like cell aggregates (pseudoislets) after syngeneic transplantation. Diabetes, 47(4), 559-565.CrossrefPubMedGoogle Scholar

  • Bertuzzi, F., Grohovaz, F., Maffi, P., Caumo, A., Aldrighetti, L., Nano, R., Hengster, P., Calori, G., Di Carlo, V., Bonifacio, E., Secchi, A. (2002). Successful transplantation of human islets in recipients bearing a kidney graft. Diabetologia, 45(1), 77-84.CrossrefPubMedGoogle Scholar

  • Bertuzzi, F., Ricordi, C. (2007). Prediction of clinical outcome in islet allotransplantation. Diabetes Care, 30(2), 410-417.PubMedCrossrefGoogle Scholar

  • Bonner-Weir, S., Taneja, M., Weir, G.C., Tatarkiewicz, K., Song, K.-H., Sharma, A., O'Neil, J.J. (2000). In vitro cultivaton of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA, 97(14), 7999-8004.CrossrefGoogle Scholar

  • Bouwens, L., Kloppel, G. (1996). Islet neogenesis in the pancreas. Virchows Arch., 427(6), 553-560.Google Scholar

  • Bouwens L., Rooman I. (2005). Regulation of pancreatic beta-cell mass. Physiol. Rev., 85(4), 1255-1270.PubMedCrossrefGoogle Scholar

  • Brissova, M., Fowler, M., Wiebe, P., Shostak, A., Shiota, M., Radhika, A., Lin, P.C., Gannon, M., Powers, A.C. (2004). Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes, 53(5), 1318-1325.PubMedCrossrefGoogle Scholar

  • Bucher, P., Oberholzer, J., Bosco, D., Mathe, Z., Toso, C., Bühler, L.H., Berney, T., Morel, P. (2005). Microbial surveillance during human pancreatic islet isolation. Transpl. Int., 18(5), 584-589.PubMedCrossrefGoogle Scholar

  • Burke, G.W., Ciancio, G., Sollinger, H.W. (2004). Advances in pancreas transplantation. Transplantation, 15(77), 7135-7142.Google Scholar

  • Cao, L.Z., Tang, D.Q., Horb, M.E., Li, S.W., Yang, L.J. (2004). High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells. Diabetes, 53(12), 3168-3178.Google Scholar

  • Caumo, A., Maffi, P., Nano, R., Bertuzzi, F., Luzi, L., Secchi, A., Bonifacio, E., Piemonti, L. (2008). Transplant estimated function (TEF): A simple index to evaluate beta-cell secretion after islet transplantation. Diabetes Care, 31(2), 301-305.PubMedGoogle Scholar

  • Chen, N.K., Sivalingam, J., Tan, S.Y., Kon, O.L. (2005). Plasmid-electroporated primary hepatocytes acquire quasi-physiological secretion of human insulin and restore euglycemia in diabetic mice. Gene Ther., 12(8), 655-667.CrossrefPubMedGoogle Scholar

  • Davalli, A.M., Scaglia, L., Zangen, D.H., Hollister, J., Bonner-Weir, S., Weir, G.C. (1996). Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function. Diabetes, 45(9), 1161-1167.CrossrefPubMedGoogle Scholar

  • Desai, B.M., Oliver-Krasinski, J., De Leon, D.D., Farzad, C., Hong, N., Leach, S.D., Stoffers, D.A. (2007). Preexisting pancreatic acinar cells contribute to acinar cell, but not islet βcell, regeneration. J. Clin. Invest., 117(4), 971-977.Google Scholar

  • Dor, Y., Brown, J., Martinez, O.I., Melton, D.A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 429, 41-46.Google Scholar

  • Dudek, R.W., Lawrence, I.E. Jr., Hill, R.S., Johnson, R.C. (1991). Induction of islet cytodifferentiation by fetal mesenchyme in adult pancreatic ductal epithelium. Diabetes, 40(8), 1041-1048.PubMedCrossrefGoogle Scholar

  • Duvillie, B., Attali, M., Aiello, V., Quemeneur, E., Scharfmann, R. (2003). Label-containing cells in the rat pancreas. Location and differentiation potential in vitro. Diabetes, 52(8), 2035-2042.CrossrefGoogle Scholar

  • Eberhardt, M.S.P., von Mach, M.A., Hengstler, J.G., Brulport, M., Linscheid, P., Seboek, D., Oberholzer, J., Barbero, A., Martin, I., Müller, B., Trono, D., Zulewski, H. (2006). Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem. Biophys. Res. Commun., 345(3), 1167-1176.Google Scholar

  • Elliott, R.B., Escobar, L., Tan, P.L., Muzina, M., Zwain, S., Buchanan, C. (2007). Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation, 14(2), 157-161.Google Scholar

  • Farney, A.C., Najarian, J.S., Nakhleh, R.E., Lloveras, G., Field, M.J., Gores, P.F., Sutherland, D.E. (1991). Autotransplantation of dispersed pancreatic islet tissue combined with total or near-total pancreatectomy for treatment of chronic pancreatitis. Surgery, 110(2), 427-437.PubMedGoogle Scholar

  • Finegood, D.T., Scaglia, L., Bonner-Weir, S. (1995). Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes, 44(3), 249-256.PubMedCrossrefGoogle Scholar

  • Foster, J.L., Williams, G., Williams, L.J., Tuch, B.E. (2007). Differentiation of transplanted microencapsulated fetal pancreatic cells. Transplantation, 83(11), 1440-1448.CrossrefPubMedGoogle Scholar

  • Foulis, A.K., McGill, M., Farquharson, M.A. (1991). Insulitis in type 1 (insulin-dependent) diabetes mellitus in man—macrophages, lymphocytes, and interferon-gamma containing cells. J. Pathol., 165(2), 97-103.Google Scholar

  • Frank, A., Deng, S., Huang, X., Velidedeoglu, E., Bae, Y.-S., Liu, C., Abt, P., Stephenson, R., Mohiuddin, M., Thambipillai, T., Markmann, E., Palanjian, M., Sellers, M., Naji, A., Barker, C.F., Markmann, J.F. (2004). Transplantation for type 1 diabetes. Comparison of vascularized whole-organ pancreas with isolated pancreatic islets. Ann. Surg., 240(4), 631-643.Google Scholar

  • Fraud, T., Ricordi, C., Baidal, D.A., Hafiz, M.M., Ponte, G., Cure, P., Pileggi, A., Poggioli, R., Ichii, H., Khan, A., Ferreira, J.V., Pugliese, A., Esquenazi, V.V., Kenyon, N.S., Alejandro, R. (2005). Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. Amer. J. Transplant., 5(8), 2037-2046.Google Scholar

  • Gasa, R., Mrejen, C., Leachman, N., Otten, M., Barnes, M., Wang, J., Chakrabarti, S., Mirmira, R., German, M. (2004). Proendocrine genes co-ordinate the pancreatic islet differentiation program in vitro. Proc. Natl. Acad. Sci. USA, 101(36), 13245-13250.CrossrefGoogle Scholar

  • Gatto, C., Callegari, M., Folin, M., Conconi, M., Paolin, A., Di Falco, G., Bredariol, S., Spinazzi, R., Parnigotto, P.P., Nussdorfer, G.G. (2003). Effects of cryopreservation and coculture with pancreatic ductal epithelial cells on insulin secretion from human pancreatic islets. Int. J. Mol. Med., 12(6), 851-854.PubMedGoogle Scholar

  • Gershengorn, M.C., Hardikar, A.A., Wei, C., Geras-Raaka, E., Marcus-Samuels, B., Raaka, B.M. (2004). Epithelial to mesenchymal transition generates proliferative human islet precursor cells. Science, 306, 2261-2264.Google Scholar

  • Gillespie, K.M. (2006). Type 1 diabetes: pathogenesis and prevention. CMAJ, 175(2), 165-170.Google Scholar

  • Gray, D.W.R. (1989). The role of exocrine tissue in pancreatic islet transplantation. Transplant Int., 2(1), 41-45.CrossrefGoogle Scholar

  • Gruessner, A.C., Sutherland, D.E. (2004). Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004. Clin. Transplant., 19(4), 433-455.Google Scholar

  • Halban, P.A. (2004). Cellular sources of new pancreatic—cells and therapeutic implications for regenerative medicine. Nat. Cell Biol., 6(11), 1021-1025.CrossrefPubMedGoogle Scholar

  • Hao, E., Tyrberg, B., Itkin-Ansari, P., Lakey, J.R., Geron, I., Monosov, E.Z., Barcova, M., Mercola, M., Levine, F. (2006). Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat. Med., 12(3), 310-316.PubMedCrossrefGoogle Scholar

  • Heit, J.J., Karnik, S.K., Kim, S.K. (2006). Intrinsic regulators of pancreatic beta-cell proliferation. Annu. Rev. Cell Dev. Biol., 22, 311-338.CrossrefPubMedGoogle Scholar

  • Heremans, Y., Van De Casteele, M., In't Veld, P., Gradwohl, G., Serup, P., Madsen, O., Pipeleers, D., Heimberg, H. (2002). Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol., 159(2), 303-312.Google Scholar

  • Hering, B.J., Kandaswamy, R., Ansite, J.D., Eckman, P.M., Nakano, M., Sawada, T., Matsumoto, I., Ihm, S.H., Zhang, H.J., Parkey, J., Hunter, D.W., Sutherland, D.E. (2005). Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes. JAMA, 293(7), 830-835.Google Scholar

  • Hohmeier, H.E., Tran, V.V., Chen, G., Gasa, R., Newgard, C.B. (2003). Inflammatory mechanisms in diabetes: Lessons from the beta-cell. Int. J. Obes. Relat. Metab. Disord., 27 (Suppl. 3), S12-S16.CrossrefGoogle Scholar

  • Hori, Y., Gu, X., Xie, X., Kim, S.K. (2005). Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med., 2(4), e103.CrossrefGoogle Scholar

  • Ianus, A., Holz, G.G., Theise, N.D., Hussain, M.A. (2003). In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest., 111(6), 843-850.Google Scholar

  • Ihm, S.H., Matsumoto, I., Sawada, T., Nakano, M., Zhang, H.J., Ansite, J.D., Sutherland, D.E., Hering, B.J. (2006). Effect of donor age on function of isolated human islets. Diabetes, 55(5), 1361-1368.CrossrefPubMedGoogle Scholar

  • Johnson, J.D., Bernal-Mizrachi, E., Alejandro, E.U., Han, Z., Kalynyak, T.B., Li, H., Beith, J.L., Gross, J., Warnock, G.L., Townsend, R.R., Permutt, M.A., Polonsky, K.S. (2006). Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proc. Natl. Acad. Sci. USA, 103(51), 19575-19580.CrossrefGoogle Scholar

  • Johnson, P.R., White, S.A., London, N.J. (1996). Collagenase and human islet isolation. Cell Transplant., 5(4), 437-452.PubMedCrossrefGoogle Scholar

  • Keymeulen, B., Gillard, P., Mathieu, C., Movahedi, B., Maleux, G., Delvaux, G., Ysebaert, D., Roep, B., Vandemeulebroucke, E., Marichal, M., In't Veld, P., Bogdani, M., Hendrieckx, C., Gorus, F., Ling, Z., van Rood, J., Pipeleers, D. (2006). Correlation between β cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc. Natl. Acad. Sci. USA, 103(46), 17444-17449.CrossrefGoogle Scholar

  • Kin, T., Rosichuk, S., Shapiro, A.M., Lakey, J.R. (2007a). Detection of microbial contamination during human islet isolation. Cell Transplant., 16(1), 9-13.PubMedGoogle Scholar

  • Kin, T., Zhai, X., Murdoch, T.B., Salam, A., Shapiro, A.M., Lakey, J.R. (2007b). Enhancing the success of human islet isolation through optimization and characterization of pancreas dissociation enzyme. Amer. J. Transplant., 7(5), 1233-1241.PubMedGoogle Scholar

  • King, A.J.F., Fernandes, J.R., Hollister-Lock, J., Nienaber, C.E., Bonner-Weir, S., Weir, G.C. (2007). Normal relationship of β-and non-β-cells not needed for successful islet transplantation. Diabetes, 56(9), 2312-2318.CrossrefPubMedGoogle Scholar

  • Kodama, S., Kuhtreiber, W., Fujimura, S., Dale, E.A., Faustman, D.L. (2003). Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science, 302, 1223-1227.Google Scholar

  • Lakey, J.R., Kneteman, N.M., Rajotte, R.V., Wu, D.C., Bigam, D., Shapiro, A.M. (2002). Effect of core pancreas temperature during cadaveric procurement on human islet isolation and functional viability. Transplantation, 73(7), 1106-1110.CrossrefPubMedGoogle Scholar

  • Lakey, J.R., Warnock, G.L., Rajotte, R.W., Suarez-Alamazor, M.E., Ao, Z., Shapiro, A.M., Kneteman, N.M. (1996). Variables in organ donors that affect the recovery of human islets of Langerhans. Transplantation, 61(7), 1047-1053.PubMedCrossrefGoogle Scholar

  • Lendahl, U., Zimmerman, L.B., McKay, R.D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585-595.CrossrefPubMedGoogle Scholar

  • Linetsky, E., Bottino, R., Lehmann, R., Alejandro, R., Inverardi, L., Ricordi, C. (1997). Improved human islet isolation using a new enzyme blend, liberase. Diabetes, 46(7), 1120-1123.CrossrefPubMedGoogle Scholar

  • Luzi, L., Perseghin, G., Brendel, M.D., Terruzzi, I., Battezzati, A., Eckhard, M., Brandhorst, D., Brandhorst, H., Friemann, S., Socci, C., Di Carlo, V., Piceni Sereni, L., Benedini, S., Secchi, A., Pozza, G., Bretzel, R.G. (2001). Metabolic effects of restoring partial β-cell function after islet allotransplantation in type 1 diabetic patients. Diabetes, 50(2), 277-282.CrossrefPubMedGoogle Scholar

  • Matsumoto, S., Noguchi, H., Naziruddin, B., Onaca, N., Jackson, A., Nobuyo, H., Teru, O., Naoya, K., Klintmalm, G., Levy, M. (2007). Improvement of pancreatic islet cell isolation for transplantation. Proc. Bayl. Univ. Med. Cent., 20(4), 357-362.PubMedGoogle Scholar

  • Matsumoto, S., Okitsu, T., Iwanaga, Y., Noguchi, H., Nagata, H., Yonekawa, Y., Yamada, Y., Fukuda, K., Tsukiyama, K., Suzuki, H., Kawasaki, Y., Shimodaira, M., Matsuoka, K., Shibata, T., Kasai, Y., Maekawa, T., Shapiro, J., Tanaka, K. (2005). Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet, 365, 1642-1644.Google Scholar

  • Matsumoto, S., Tanaka, K., Strong, D.M., Reems, J.A. (2004). Efficacy of human islet isolation from the tail section of the pancreas for the possibility of living donor islet transplantation. Transplantation, 78(6), 839-843.CrossrefPubMedGoogle Scholar

  • Meier, J.J., Bhushan, A., Butler, P.C. (2006). The potential for stem cell therapy in diabetes. Pediatr. Res., 59(4, Pt. 2), 65R-73R.CrossrefGoogle Scholar

  • Meier, J.J., Bhushan, A., Butler, A.E., Rizza, R.A., Butler, P.C. (2005). Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: Indirect evidence for islet regeneration. Diabetologia, 48(11), 2221-2228.PubMedCrossrefGoogle Scholar

  • Menger, M.D., Vajkoczy, P., Beger, C., Messmer, K. (1994). Orientation of microvascular blood flow in pancreatic islet isografts. J. Clin. Invest., 93(5), 2280-2285.Google Scholar

  • Merchant, F.A., Diller, K.R., Aggarwal, S.J., Bovik, A.C. (1997). Angiogenesis in cultured and cryopreserved pancreatic islet grafts. Transplantation, 63(11), 1652-1660.PubMedCrossrefGoogle Scholar

  • Miettinen, P.J., Ustinov, J., Ormio, P., Gao, R., Palgi, J., Hakonen, E., Juntti-Berggren, L., Berggren, P.O., Otonkoski, T. (2006). Downregulation of EGF receptor signaling in pancreatic islets causes diabetes due to impaired postnatal beta-cell growth. Diabetes, 55(12), 3299-3308.PubMedCrossrefGoogle Scholar

  • Minami, K., Okuno, M., Miyawaki, K., Okumachi, A., Ishizaki, K., Oyama, K., Kawaguchi, M., Ishizuka, N., Iwanaga, T., Seino, S. (2005). Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc. Natl. Acad. Sci. USA, 102(42), 15116-15121.CrossrefGoogle Scholar

  • Moriscot, C., de Fraipont, F., Richard, M.J., Marchand, M., Savatier, P., Bosco, D., Favrot, M., Benhamou, P.Y. (2005). Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells, 23(4), 594-603.PubMedCrossrefGoogle Scholar

  • Morris, P.J., Monaco, A.P. (2005). Pancreatic islet transplantation: Is the glass half-empty or half-full? Transplantation, 79(10), 1287-1288.CrossrefPubMedGoogle Scholar

  • Morrow, C.E., Cohen, J.I., Sutherland, D.E., Najarian, J.S. (1984). Chronic pancreatitis: Long-term surgical results of pancreatic duct drainage, pancreatic resection, and near-total pancreatectomy and islet autotransplantation. Surgery, 96(4), 608-616.PubMedGoogle Scholar

  • Murtaugh, L.C. (2007). Pancreas and beta-cell development: From the actual to the possible. Development, 134(3), 427-438.Google Scholar

  • Nakajima-Nagata, N., Sakurai, T., Mitaka, T., Katakai, T., Yamato, E., Miyazaki, J., Tabata, Y., Sugai, M., Shimizu, A. (2004). In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem. Biophys. Res. Commun., 318(3), 625-630.Google Scholar

  • Nano, R., Clissi, B., Melzi, R., Calori, G., Maffi, P., Antonioli, B., Marzorati, S., Aldrighetti, L., Freschi, M., Grochowiecki, T., Socci, C., Secchi, A., Di Carlo, V., Bonufacio, E., Bertuzzi, F. (2005). Islet isolation for allotransplantation: Variables associated with successful islet yield and graft function. Diabetologia, 48(5), 906-912.PubMedCrossrefGoogle Scholar

  • Narang, A.S., Mahato, R.I. (2006). Biological and biomaterial approaches for improved islet transplantation. Pharmacol. Rev., 58(2), 194-243.CrossrefPubMedGoogle Scholar

  • Nir, T., Melton, D.A., Dor, Y. (2007). Recovery from diabetes in mice by β cell regeneration. J. Clin. Invest., 117(9), 2553-2561.Google Scholar

  • O'Connell, P.J., Hawthorne, W.J., Holmes-Walker, D.J., Nankivell, B.J., Gunton, J.E., Patel, A.T., Walters, S.N., Pleass, H.C.C., Allen, R.D.M., Chapman, J.R. (2006). Clinical islet transplantation in type 1 diabetes mellitus: Results of Australia's first trial. MJA (Medical Journal of Australia), 184(5), 221-225.Google Scholar

  • Oh, S.H., Muzzonigro, T.M., Bae, S.H., LaPlante, J.M., Hatch, H.M., Petersen, B.E. (2004). Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest., 84(5), 607-617.CrossrefPubMedGoogle Scholar

  • Okuno, M., Minami, K., Okumachi, A., Miyawaki, K., Yokoi, N., Toyokuni, S., Seino, S. (2007). Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Amer. J. Physiol. Endocrinol. Metab., 292(1), E158-E165.Google Scholar

  • Paget, M., Murray, H., Bailey, C.J., Downing, R. (2007). Human islet isolation: Semi-automated and manual methods. Diabetes Vasc. Dis. Res., 4(1), 7-12.Google Scholar

  • Pierreux, C.E., Poll, A.V., Kemp, C.R., Clotman, F., Maestro, M.A., Cordi, S., Ferrer, J., Leyns, L., Rousseau, G.G., Lemaigre, F.P. (2006). The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology, 130(2), 532-541.PubMedGoogle Scholar

  • Rickels, M.R., Naji, A., Teff, K.L. (2006). Insulin sensitivity, glucose effectiveness, and free fatty acid dynamics after human islet transplantation for type 1 diabetes. J. Clin. Endocrinol. Metab., 91(6), 2138-2144.CrossrefGoogle Scholar

  • Rickels, M.R., Schutta, M.H., Markmann, J.F., Barker, C.F., Naji, A., Teff, K.L. (2005). β-Cell function following human islet transplantation for type 1 diabetes. Diabetes, 54(1), 100-106.CrossrefPubMedGoogle Scholar

  • Ricordi, C. (2003). Islet transplantation: A brave new world. Lilly lecture 2002. Diabetes, 52(7), 1595-1603.CrossrefGoogle Scholar

  • Ricordi, C., Gray, D.W., Hering, B.J., Kaufman, D.B., Warnock, G.L., Kneteman, N. M., Lake, S.P., London, N.J.M., Socci, C., Alejandro, R., Zeng, Y., Scharp, C., Viviani, G., Falqui, L., Tzakis, G., James, R.F.L., Rajotte, R.V., Di Carlo, V., Morris, P.J., Sutherland, D.E.R., Starzl, T.E., Mintz, D.H., Lacy, P.E. (1990). Islet isolation assessment in man and large animals. Acta Diabetol. Lat., 27(3), 185-195.CrossrefPubMedGoogle Scholar

  • Ricordi, C., Invetardi, L., Kenyon, N.S., Goss, J., Bertuzzi, F., Alejandro, R. (2005). Requirements for success in clinical islet transplantation. Transplantation, 79(10), 1298-1300.PubMedCrossrefGoogle Scholar

  • Ricordi, C., Lacy, P.E., Finke, E.H., Olack, B.J., Scharp, D.W. (1988). Automated method for isolation of human pancreatic islets. Diabetes, 37(4), 413-420.PubMedCrossrefGoogle Scholar

  • Robertson, R.P. (2004). Islet transplantation as a treatment for diabetes—a work in progress. N. Engl. J. Med., 350(7), 694-705.Google Scholar

  • Rossini, A.A., Greiner, D.L., Mordes, J.P. (1999). Induction of immunologic tolerance for transplantation. Physiological Reviews, 79(1), 99-141.PubMedGoogle Scholar

  • Rother, K., Harlan, D.M. (2004). Challenges facing islet transplantation for the treatment of type 1 diabetes mellitus. J. Clin. Invest., 114(7), 877-883.Google Scholar

  • Rozental R., Bicans J., Shevelev V. (1996). Organ and tissue transplantation in Latvia. Ann. Transplant., 1(3), 57-59.PubMedGoogle Scholar

  • Ryan, E.A., Lakey, J.R., Rajotte, R.W., Korbutt, G.S., Kin, T., Imes, S., Rabinovitch, A., Elliott, J.F., Bigam, D., Kneteman, N.M., Warnock, G.L., Larsen, I., Shapiro, A.M. (2001). Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes, 50(4), 710-719.PubMedCrossrefGoogle Scholar

  • Ryan, E.A., Paty, B.W., Senior, P.A., Bigam, D., Alfadhli, E., Kneteman, N.M., Lakey, J.R., Shapiro, A.M. (2005a). Five-year follow-up after clinical islet transplantation. Diabetes, 54(7), 2060-2069.PubMedCrossrefGoogle Scholar

  • Ryan, E.A., Paty, B.W., Senior, P.A., Lakey, J.R., Bigam, D., Shapiro, A.M. (2005b). β-Score: An assessment of β-cell function after islet transplantation. Diabetes Care, 28(4), 343-347.PubMedCrossrefGoogle Scholar

  • Ryan, E.A., Shandro, T., Green, K., Paty, B.W., Senior, P.A., Bigam, D., Shapiro, A.M., Vantyghem, M.C. (2004). Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes, 53(4), 955-962.CrossrefPubMedGoogle Scholar

  • Sapir, T., Shternhall, K., Meivar-Levy, I., Blumenfeld, T., Cohen, H., Skutelsky, E., Eventov-Friedman, S., Barshack, I., Goldberg, I., Pri-Chen, S., Ben-Dor, L., Polak-Charcon, S., Karasik, A., Shimon, I., Mor, E., Ferber, S. (2005). Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proc. Natl. Acad. Sci. USA, 102(22), 7964-7969.CrossrefGoogle Scholar

  • Scharfmann, R. (2003). Alternative sources of beta cells for cell therapy of diabetes. Eur. J. Clin. Invest., 33(7), 595-600.CrossrefGoogle Scholar

  • Serup, P., Madsen, O.D., Mandrup-Poulsen, T. (2001). Islet and stem cell transplantation for treating diabetes. BMJ (British Medical Journal), 322(1), 29-32.Google Scholar

  • Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M., Rajotte, R.V. (2000). Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med., 343(4), 230-238.Google Scholar

  • Shapiro, A.M., Ricordi, C., Hering, B.J., Auchincloss, H., Lindblad, R., Robertson, R.P., Secchi, A., Brendel, M.D., Berney, T., Brennan, D.C., Cagliero, M.D., Alejandro, R., Ryan, E.A., DiMercurio, B., Morel, P., Polonsky, K.S., Reems, J.A., Bretzel, R. G., Bertuzzi, F., Fround T., Kandaswamy, R., Sutherland, D.E., Eisenbarth, G., Segal, M., Preiksaitis, J., Korbutt, G.S., Barton F.B., Viviano, L., Seyfert-Margolis, V., Bluestone, J., Lakey, J.R. (2006). International trial of the Edmonton protocol for islet transplantation. N. Eng. J. Med., 355(13), 1318-1330.Google Scholar

  • Soria, B., Bedoya, F.J., Martin, F. (2005). Gastrointestinal Stem Cells. I. Pancreatic stem cells. Amer. J. Physiol. Gastrointest. Liver Physiol., 289(2), G177-G180.Google Scholar

  • Srinivasan, P., Huang, G.C., Amiel, S.A., Heaton, N.D. (2006). Islet cell transplantation. Postgrad. Med. J., 83(978), 224-229.Google Scholar

  • Stagner, J.I., Rilo, H.L., White, K.K. (2007). The pancreas as an islet transplantation site. Confirmation in a syngeneic rodent and canine autotransplant model. JOP, J. Pancreas, 8(5), 628-636.Google Scholar

  • Street, C.N., Lakey, J.R.T., Shapiro, A.M.J., Imes, S., Rajotte, R.V., Ryan, E.A., Lyon, J.G., Kin, T., Avila, J., Tsujimura, T., Korbutt, G.S. (2004). Islet graft assessment in the Edmonton protocol. Implications for predicting long-term clinical outcome. Diabetes, 53(12), 3107-3114.CrossrefPubMedGoogle Scholar

  • Suarez-Pinzon, W.L., Lakey, J.R.T., Brand, S.J., Rabinovitch, A. (2005). Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J. Clin. Endocrinol. Metab., 90(6), 3401-3409.CrossrefGoogle Scholar

  • Sun, Y., Chen, L., Hou, X.G., Hou, W.K., Dong, J.J., Sun, L., Tang, K.X., Wang, B., Song, J., Li, H., Wang, K.X. (2007a). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro.Chin. Med. J. (Engl.), 120(9), 771-776.Google Scholar

  • Sun, B., Roh, K.H., Lee, S.R., Lee, Y.S., Kang, K.S. (2007b). Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure. Biochem. Biophys. Res. Commun., 354(4), 919-923.Google Scholar

  • Tang, D.Q., Cao, L.Z., Chou, W., Shun, L., Farag, C., Atkinson, M.A., Li, S.W., Chang, L.J., Yang, L.J. (2006). Role of Pax4 in Pdx1-VP16-mediated liver-to-endocrine pancreas transdifferentiation. Lab. Invest., 86(8), 829-841.Google Scholar

  • Teta, M., Long, S.Y., Wartschow, L.M., Rankin, M.M., Kushner, J.A. (2005). Very slow turnover of beta-cells in aged adult mice. Diabetes, 54(9), 2557-2567.CrossrefPubMedGoogle Scholar

  • Truong, W., Lakey, J.R., Ryan, E.A., Shapiro, A.M. (2005). Clinical islet transplantation at the University of Alberta—the Edmonton experience. Clin. Transpl., 153-172.Google Scholar

  • Tsang, W.G., Zheng, T., Wang, Y., Tang, J., Rind, H.B., Francki, A., Bufius, N. (2007). Generation of functional islet-like clusters after monolayer culture and intracapsular aggregation of adult human pancreatic islet tissue. Transplantation, 83(6), 685-693.PubMedCrossrefGoogle Scholar

  • Wiseman, A.C., Gill, R.G. (2004). Current status of clinical islet transplantation: Advances and obstacles. Curr. Opin. Endocrinol. Diabetes, 11(2), 98-103.CrossrefGoogle Scholar

  • Wolters, G.H., Vos-Scheperkeuter, G.H., van Deijnen, J.H., van Schilfgaarde, R. (1992). An analysis of the role of collagenase and protease in the enzymatic dissociation of the rat pancreas for islet isolation. Diabetologia, 35(8), 735-742.PubMedGoogle Scholar

  • Woodbury, D., Schwarz E.J., Prockop, D.J., Black, I.B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res., 61(4), 364-370.Google Scholar

  • Wu, X.H., Liu, C.P., Xu, K.F., Mao, X.D., Zhu, J., Jiang, J.J., Cui, D., Zhang, M., Xu Y., Liu, C. (2007). Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J. Gastroenterol., 13(24), 3342-3349.PubMedGoogle Scholar

  • Yamaoka, T. (2002). Regeneration therapy of pancreatic beta cells: Towards a cure for diabetes? Biochem. Biophys. Res. Commun., 296(5), 1039-1043.Google Scholar

  • Yatoh, S., Dodge, R., Akashi, T., Omer, A., Sharma, A., Weir, G.C., Bonner-Weir, S. (2007). Differentiation of affinity-purified human pancreatic duct cells to β-cells. Diabetes, 56(7), 1802-1809.CrossrefPubMedGoogle Scholar

  • Zalzman, M., Gupta, S., Giri, R.K., Berkovich, I., Sappal, B.S., Karnieli, O., Zern, M.A., Fleischer, N., Efrat, S. (2003). Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc. Natl. Acad. Sci. USA, 100(12), 7253-7258.CrossrefGoogle Scholar

  • Zulewski, H., Abraham, E.J., Gerlach, M., Daniel, P.B., Moritz, W., Müller, B., Vallejo, M., Thomas, M.K., Habener, J.F. (2001). Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes, 50(3), 521-533.CrossrefPubMedGoogle Scholar

  • Лейниекс, А. (1989). Оценка эффективности трансплантации культуры островковых клеток поджелудочной железы у больных сахарным диабетом [Evaluation of efficiency of pancreatic islet cells transplantation in diabetic patients]. Автореф. дисс. Москва, НИИ трансплантологии и искусственных органов. 25 с. (in Russian).Google Scholar

About the article


Published Online: 2009-04-02

Published in Print: 2008-01-01


Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., ISSN (Print) 1407-009X, DOI: https://doi.org/10.2478/v10046-009-0005-x.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in