Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


CiteScore 2016: 0.20

SCImago Journal Rank (SJR) 2016: 0.138
Source Normalized Impact per Paper (SNIP) 2016: 0.217

Open Access
Online
ISSN
1407-009X
See all formats and pricing
More options …
Volume 63, Issue 1-2 (Jan 2009)

Issues

Toxicity and Genotoxicity Testing of Roundup

Jēkabs Raipulis
  • Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda bulv. 4, Riga, LV-1586, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Malda Toma
  • Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda bulv. 4, Riga, LV-1586, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maija Balode
Published Online: 2009-07-08 | DOI: https://doi.org/10.2478/v10046-009-0009-6

Toxicity and Genotoxicity Testing of Roundup

Glyphosate, in the commercial formulation named Roundup, is a broad spectrum herbicide that is one of the most frequently applied pesticides in the world. However, there has been little evidence of Roundup toxicity or genotoxicity. Genotoxicity of glyphosate was carried out using the Escherichia coli SOS chromotest. The glyphosate-induced dose response in the SOS chromotest suggests that glyphosate possesses genotoxic properties. Glyphosate at a 0.2 g/l concentration in toxicity bioassay caused 50% mortality of Daphnia magna (LD50 after 24 h — 0.22 g/l; after 48 h — 0.19 g/l), but 0.25 — 0.5 g/l — 100% death of organisms (LD100 after 24 h — 0.5 g/l; after 48 h — 0.25 g/l). Our results (E. coli SOS chromotest and daphnia test system) together with recent animal studies and epidemiological reports suggest that glyphosate, especially, Roundup possesses both toxic and genotoxic properties.

Raundapa Toksicitāte un Genotoksicitāte

Kā vienu no videi un cilvēkam nekaitīgākajiem herbicīdiem jau kopš tā ieviešanas 1970. gadā reklamē glifosātu (N-fosfonometilglicīnu), kura komercnosaukums ir raundaps (Monsanto, Beļgija). Raundapu plaši izmanto gan graudaugu, gan negraudaugu lauku nezāļu iznīcināšanai. Raundaps ir maisījums, kurā glifosātam ir pievienots detergents polioksietilenamīns. Lai gan tiek apgalvots, ka raundaps ir videi un cilvēkam nekaitīgs, tomēr ir arī ziņojumi par šī herbicīda izraisītajiem kaitīgajiem efektiem. Mēs raundapa toksicitāti analizējām ar Daphnia magna testkultūrām un genotoksicitāti ar Escherichia coli SOS hromotesta metodi. 0,2 g/l glifosāta toksicitātes testā izraisīja 50% Daphnia magna letalitāti (LD50 - 0,22 g/l pēc 24 studām, 0,19 g/l pēc 48 stundām), bet 0,25 - 0,5 g/l - 100% organismu nāvi (LD100 - 0,5 g/l pēc 24 stundām, 0,25 g/l pēc 24 stundām). Tātad raundaps koncentrācijās no 0,2 g/l - 0,5 g/l, kas ir ievērojami zemāka nekā tiek izmantota lauku apstrādei, izraisa testobjekta dafnijas (Daphnia magna) bojāeju, kas liecina par šī preparāta toksiskumu. Eksperimentos ar E. coli SOS hromotesta metodi, analizējot herbicīdu tādās pašās koncentrācijās kā toksicitātes testā, tika konstatēta genētisko bojājumu palielināšanās, pieaugot glifosāta koncentrā analizējamajā materiālā - tas liecina par glifosāta genotoksisko aktivitāti. Ar abām metodēm iegūtie rezultāti apstiprina, ka raundapam ir gan toksiskā iedarbība, gan genotoksiskie efekti.

Keywords: glyphosate (Roundup); toxicity; genotoxicity; Escherichia coli SOS chromotest; toxicity bioassay

  • Ahitiainen, J.H., Vanhala, P., Myllymaki, J. (2003). Effects of different plant protection programme on soil microbes. Ecotox. Environm. Safety, 54, 56--64.Google Scholar

  • Ames, B.N. (1992) Pollution, pesticides and cancer. J. AOAC (Association of Analytical Communities) Int., 75, 1--5.Google Scholar

  • Anonymous (1996). ISO 6341:20 Water quality: Determination of long time toxicity of substances to Daphnia magna Strauss (Cladocera Crustacea). International Organization for Standardization.Google Scholar

  • Blaustein, A.R., Johnson, P.T.J. (2003). Explaining frog deformities. Sci. Amer., Febr, 48--53.Google Scholar

  • Bolognesi, C., Bonatti, S., Dugan, P., Gallerani, E., Peluso, M., Rabboni, R., et al. (1997). Genotoxic activity of glyphosate and its technical formation Roundup. J. Agric. Food Chem., 47, 1957--1962.Google Scholar

  • Bolognesi, C. (2003). Genotoxicity of pesticides: A review of human biomonitoring studies. Mut. Res./Rev. Mut. Res., 543, pp. 251--272.Google Scholar

  • Brausch, J.M., Smith, P.N. (2007). Toxicity of three polyethylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp, Thamnocephalus platyrus. Arch. Environ. Contam. Toxicol., 52(2), 217--221.CrossrefWeb of ScienceGoogle Scholar

  • Bull, S., Fletcher K., Bodis, A.R., Battershill, J.M. (2006). Evidence for genotoxicity of pesticides in pesticide applicators: A review. Mutagenesis, 21, 93--103.Google Scholar

  • Colborn, T. A case for revisiting the safety of pesticides: A close look at neurodevelopment. http://www.medscape.com/viewarticle/522014?src=search

  • Cox, C. (1995). Glyphosate. Part 2: Human exposure and ecological effects. J. Pest. Reform, 15.Google Scholar

  • De Roos, A.J., Blair, A., Rusiecki, J.A., Hoppin, J.A., Svec, M., Dosemeci, M., Sandler, D.P., Alavanja, M.C. (2005). Cancer incidence among Glyphosate-exposed pesticide applications in the agricultural health study. Environ. Health Perspect., 113(1), 23--30.Google Scholar

  • Greenlee, A.R., Arbucle, T.E., Chyon, P.H. (2003). Risk factors for female infertility in an agricultural disturbances. Epidemiology, 14, 428--436.Google Scholar

  • Mesch-Sundermann, V., Mochayedi, S., Kevekordes, S. (1992). Genotoxicity of polycyclic hydrocarbons in Escherichia coli PQ37. Mut. Res., 278, 1--9.Google Scholar

  • Monroy, C.M., Cortes, A.C., Sicardi, D.M., de Restrepo, H.G. (2005). Cytotoxicity and genotoxicity of human cells exposure in vitro to glyphosate. Biomedica, 25(3), 335--345.Google Scholar

  • Quillardat, P., Hofnung, M. (1985). The SOS chromotest a colorimertric bacterial assay for genotoxins: procedures. Mut. Res., 147, 65--78.Google Scholar

  • Quillardat, P., Hofnung, M. (1993). The SOS chromotest: A review. Mut. Res., 297, 235--279.Google Scholar

  • Rank, J., Jensen, A.G., Skov, B., Pedersen, L.H., Jense, K. (1993). Genotxicity testing of the herbicide Roundup and its active ingredient glyphosate isopropilamine using the mouse bone marrow micronucleus test, Salmonella mutagenicity test, and Allium anaphase-telophase test. Mut. Res., 300(1), 29--36.Google Scholar

  • Richard S., Moeslemi S., Sipathur H., Benachour N., Seralini G. (2005). Differential effects of Glyophosate and Roundup on cells and aromatase. Environm. Health Perspect., 113, 716--720.Google Scholar

  • Service, R.F. (2007). A growing threat down on the farm. Science, 316, 1114--1117.Web of ScienceGoogle Scholar

  • Stratton, G.V., Giles, J. (1990) Importance of bioassay volume in toxicity tests using algae and aquatic invertebrates. Envir. Contamin. Toxicol., 44(3), 420--427.Google Scholar

  • Tsui, M.T., Chu, L.M. (2003). Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere, 52(8), 1189--1197.CrossrefPubMedGoogle Scholar

  • Williams, G.M., Kroes, R., Munro, I.C. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol., 31(1), 117--165.Google Scholar

  • Клинцаре А.А (1983). Пестициды и микрофлора растений[Pesticides and Plant Microflora]. Рига, Зинатне. 168 с.Google Scholar

About the article


Published Online: 2009-07-08

Published in Print: 2009-01-01


Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., ISSN (Print) 1407-009X, DOI: https://doi.org/10.2478/v10046-009-0009-6.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in