Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


CiteScore 2016: 0.20

SCImago Journal Rank (SJR) 2016: 0.138
Source Normalized Impact per Paper (SNIP) 2016: 0.217

Open Access
Online
ISSN
1407-009X
See all formats and pricing
More options …
Volume 64, Issue 3-4

Issues

Adipose-derived stem cells cultured in autologous serum maintain the characteristics of mesenchymal stem cells

Ance Bogdanova / Uldis Bērziņš / Ruta Brūvere / Guļšena Eivazova / Tatjana Kozlovska
Published Online: 2011-01-25 | DOI: https://doi.org/10.2478/v10046-010-0026-5

Adipose-derived stem cells cultured in autologous serum maintain the characteristics of mesenchymal stem cells

Human adipose tissue is known to be an attractive and readily available source of mesenchymal stem cells (MSC), which are becoming increasingly popular for application in regenerative medicine. Most of the protocols currently used for in vitro expansion of MSC include fetal bovine serum (FBS) supplementation. When MSC are cultured in such a way for clinical applications this rises concerns about immunogenicity of FBS proteins. A possible solution to this problem is the use of autologous serum (AS) instead of FBS. In this study we investigated whether adipose-derived stem cells (ADSC), cultivated in medium containing AS, maintain characteristics of MSC. The results show that the obtained ADSC were plastic adherent, rapidly dividing (doubling time 40 ± 4 hours), spindle-shaped cells with fibroblastoid morphology and exhibited normal karyotype. No less than 95% of the obtained cells displayed MSC surface markers, including CD73, CD90 and CD105, but showed no expression of the hematopoietic markers CD34 and CD45. ADSC cultured in the presence of AS underwent in vitro differentiation into adipocytes, osteoblasts and chondroblasts, confirmed by Oil Red O, Alizarin Red S and Alcian Blue stains, respectively. These findings suggest that ADSC may be expanded in the AS without the loss of characteristics of MSC.

No taukaudiem izdalītas cilmes šūnas, kuras kultivētas barotnē ar autologo serumu, saglabā mezenhimālo cilmes šūnu īpašības

Cilvēka taukaudi ir viegli pieejams un vērtīgs mezenhimālo cilmes šūnu (mesenchymal stem cells, MSC) avots, un to pielietojums regeneratīvajā medicīnā arvien palielinās. Lielākā daļa protokolu, kas pašlaik tiek izmantoti MSC pavairošanai in vitro, satur fetālo teļa serumu (fetal calf serum, FCS). Šādi kultivētas MSC, kuras paredzētas klīniskiem mērķiem, rada bažas par FCS proteīnu imunogenitāti. Lai no tā izvairītos, FCS vietā var izmantot autologo serumu (AS). Šajā darbā mēs pētījām, vai no taukaudiem iegūtās cilmes šūnas (adipose-derived stem cells, ADSC), kuras tiek kultivētas barotnē ar AS, saglabā MSC īpašības. Rezultāti rāda, ka iegūtās cilmes šūnas bija plastmasas adherentas, vārpstveida šūnas ar fibroblastiem līdzīgu morfologiju un normālu kariotipu, tās strauji dalījās (dubultošanās laiks 40 ± 4 stundas). Vismaz uz 95% no iegūtajām šūnām tika detektēti MSC virsmas marķieri CD73, CD90 un CD105, bet netika detektēti tādi hematopoētisko šūnu marķieri kā CD34 un CD45. ADSC, kuras kultivētas barotnē ar AS, diferenciējās in vitro par adipocītiem, osteoblastiem un hondroblastiem, ko apliecināja diferenciēto šūnu krāsošana ar Oil Red O, Alizarin Red S un Alcian Blue. Iegūtie rezultāti rāda, ka ADSC var tikt pavairotas barotnē ar AS bez MSC raksturīgo iezīmju zuduma.

Keywords: adipose-derived stem cells; autologous serum; differentiation of ADSC

  • Akintoye, S. O., Lam, T., Shi, S., Brahim, J., Collins, M. T., Robey, P. G. (2006). Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone, 38(6), 758-768.PubMedCrossrefGoogle Scholar

  • Doerr, H. W., Cinatl, J., Stürmer, M., Rabenau, H. F. (2003). Prions and orthopedic surgery. Infection, 31(3), 163-171.PubMedGoogle Scholar

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317.Web of ScienceCrossrefPubMedGoogle Scholar

  • Festy, F., Hoareau, L., Bes-Houtmann, S., Péquin, A. M., Gonthier, M. P., Munstun, A., Hoarau, J. J., Césari, M., Roche, R. (2005). Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem. Cell Biol., 124(2), 113-121.PubMedCrossrefGoogle Scholar

  • Fina, L., Molgaard, H. V., Robertson, D., Bradley, N. J., Monaghan, P., Delia, D., Sutherland, D. R., Baker, M. A., Greaves, M. F. (1990). Expression of the CD34 gene in vascular endothelial cells. Blood, 75(12), 2417-2426.PubMedGoogle Scholar

  • Fraser, J. K., Wulur, I., Alfonso, Z., Hedrick, M. H. (2006). Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol., 24(4), 150-154.PubMedCrossrefGoogle Scholar

  • Fukuda, K. (2001). Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs, 25(3), 187-193.PubMedCrossrefGoogle Scholar

  • García-Olmo, D., García-Arranz, M., Herreros, D., Pascual, I., Peiro, C., Rodríguez-Montes, J. A. (2005). A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis. Colon. Rectum., 48(7), 1416-1423.CrossrefWeb of ScienceGoogle Scholar

  • Gronthos, S., Franklin, D. M., Leddy, H. A., Robey, P. G., Storms, R. W., Gimble, J. M. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. J. Cell. Physiol., 189(1), 54-63.Google Scholar

  • Handschel, J. G. K., Depprich, R. A., Kübler, N. R., Wiesmann, H. P., Ommerborn, M., Meyer, U. (2007). Prospects of micromass culture technology in tissue engineering. Head Face Med., 3, 4.PubMedGoogle Scholar

  • Kakudo, N., Shimotsuma, A., Kusumoto, K. (2007). Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem. Biophys. Res. Commun., 359(2), 239-244.Web of ScienceGoogle Scholar

  • Kasten, P., Beyen, I., Egermann, M., Suda, A. J., Moghaddam, A. A., Zimmermann, G., Liginbühl, R. (2008). Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro. Eur. Cells Mater., 16, 47-55.Google Scholar

  • Kern, S., Eichler, H., Stoeve, J., Klüter, H., Bieback, K. (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord, or adipose tissue. Stem Cells, 24(5), 1294-1301.CrossrefPubMedGoogle Scholar

  • Kopen, G. C., Prockop, D. J., Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA, 96(19), 10711-10716.CrossrefGoogle Scholar

  • Kuznetsov, S. A., Mankani, M. H., Robey, P. G. (2000) Effect of serum on human bone marrow stromal cells: Ex vivo expansion and in vivo bone formation. Transplantation, 70(12), 1780-1787.CrossrefGoogle Scholar

  • Lee, K. D., Kuo, T. K. C., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P. Lee, O. K. S. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40(6), 1275-1284.CrossrefGoogle Scholar

  • Lendeckel, S., Jödicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J. K., Hedrick, M. K., Berthold, L., Howaldt, H. P. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J. Craniomaxillofac. Surg., 32(6), 370-373.PubMedGoogle Scholar

  • Lennon, D., Haynesworth, S., Bruder, S., Jaiswal, N., Caplan, A. (1996). Human and animal mesenchymal progenitor cells from bone marrow: Identification of serum for optimal selection and proliferation. In Vitro Cell. Dev. Biol. Anim., 32(10), 602-611.CrossrefGoogle Scholar

  • Lev, R., Spicer, S. S. (1964). Specific staining of sulphate groups with alcian blue at low pH. J. Histochem. Cytochem., 12(4), 309.CrossrefGoogle Scholar

  • McIntosh, K., Zvonic, S., Garrett, S., Mitchell, J. B., Floyd, E., Hammill, L., Kloster, A., Halvorsen, Y. D., Ting, J. P., Storms, R. W., Goh, B., Kilroy, G., Wu, X., Gimble, J. M. (2006). The immunogenicity of human adipose-derived cells: Temporal changes in vitro. Stem Cells, 24(5), 1246-1253.CrossrefGoogle Scholar

  • Mizuno, N., Shiba, H., Ozeki, Y., Mouri, Y., Niitani, M., Inui, T., Hayashi, H., Suzuki, K., Tanaka, S., Kawaguchi, H., Kurihara, K. (2006). Human autologous serum obtained using a completely closed bag system as a substitute for foetal calf serum in human mesenchymal stem cell cultures. Cell Biol. Int., 30(6), 521-524.PubMedCrossrefGoogle Scholar

  • Nimura, A., Muneta, T., Koga, H., Mochizuki, T., Suzuki, K., Makino, H., Umezawa, A., Sekiya, I. (2008). Increased proliferation of human synovial mesenchymal stem cells with autologous human serum. Comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum., 58(2), 501-510.Web of SciencePubMedCrossrefGoogle Scholar

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147.Google Scholar

  • Rodriguez, A. M., Elabd, C., Amri, E. Z., Ailhaud, G., Dani, C. (2005). The human adipose tissue is a source of multipotent stem cells. Biochimie, 87(1), 125-128.PubMedCrossrefGoogle Scholar

  • Romanov, Y. A., Darevskaya, A. N., Merzlikina, N. V., Buravkova, L. B. (2005). Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull. Exp. Biol. Med., 140(1), 138-143.PubMedCrossrefGoogle Scholar

  • Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W. S., Verfaillie, C. M. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest., 109(10), 1291-1302.Google Scholar

  • Secco, M., Zucconi, E., Vieira, N. M., Fogaça, L. L. Q., Cerqueira, A., Carvalho, M. D. F., Jazedje, T., Okamoto, O. K., Muotri, A. R., Zatz, M. (2008). Multipotent stem cells from umbilical cord: Cord is richer than blood! Stem Cells, 26(1), 146-150.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Seo, M. J., Suh, S. Y., Bae, Y. C., Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun., 328(1), 258-264.Google Scholar

  • Shahdadfar, A., Frønsdal, K., Haug, T., Reinholt, F. P., Brinchmann, J. E. (2005). In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 23(9), 1357-1366.PubMedCrossrefGoogle Scholar

  • Spees, J. L., Gregory, C. A., Singh, H., Tucker, H. A., Peister, A., Lynch, P. J., Hsu, S. C., Smith, J., Prockop, D. J. (2004). Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther., 9(5), 747-756.CrossrefPubMedGoogle Scholar

  • Taléns-Visconti, R., Bonora, A., Jover, R., Mirabet, V., Carbonell, F., Castell, J. V., Gómez-Lechón, M. J. (2006). Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J. Gastroenterol., 12(36), 5834-5845.Google Scholar

  • Tapp, H., Hanley, E. N., Patt, J. C., Gruber, H. E. (2009). Adipose-derived stem cells: Characterization and current application in orthopaedic tissue repair. Exp. Biol. Med., 234(1), 1-9.Web of ScienceGoogle Scholar

  • Wakitani, S., Saito, T., Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve., 18(12), 1417-1426.PubMedGoogle Scholar

  • Yamamoto, N., Isobe, M., Negishi, A., Yoshimasu, H., Shimokawa, H., Ohya, K., Amagasa, T., Kasugai, S. (2003). Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. J. Med. Dent. Sci., 50(1), 63-69.Google Scholar

  • Yoshimura, K., Sato, K., Aoi, N., Kurita, M., Hirohi, T., Harii, K. (2008). Cell-assisted lipotransfer for cosmetic breast augmentation: Supportive use of adipose-derived stem/stromal cells. Aesthetic Plast. Surg., 32(1), 48-55.PubMedGoogle Scholar

  • Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., 7(2), 211-226.PubMedCrossrefGoogle Scholar

  • Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell., 13(12), 4279-4295.CrossrefPubMedGoogle Scholar

About the article


Published Online: 2011-01-25

Published in Print: 2010-01-01


Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., Volume 64, Issue 3-4, Pages 106–113, ISSN (Print) 1407-009X, DOI: https://doi.org/10.2478/v10046-010-0026-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maria Tayyab Baig, Gibran Ali, Sana Javaid Awan, Umara Shehzad, Azra Mehmood, Sadia Mohsin, Shaheen N. Khan, and Sheikh Riazuddin
Growth Factors, 2017, Volume 35, Number 4-5, Page 144

Comments (0)

Please log in or register to comment.
Log in