Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


CiteScore 2016: 0.20

SCImago Journal Rank (SJR) 2016: 0.138
Source Normalized Impact per Paper (SNIP) 2016: 0.217

Open Access
Online
ISSN
1407-009X
See all formats and pricing
More options …
Volume 67, Issue 4-5

Issues

Determination of Bioactive Compounds and Mineral Substances in Latvian Birch and Maple Saps

Māra Kūka
  • Corresponding author
  • Faculty of Food Technology, Latvia University of Agriculture, Lielā iela 2, Jelgava, LV-3001, LATVIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilze Čakste
  • Faculty of Food Technology, Latvia University of Agriculture, Lielā iela 2, Jelgava, LV-3001, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Endija Geršebeka
  • Faculty of Food Technology, Latvia University of Agriculture, Lielā iela 2, Jelgava, LV-3001, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-01 | DOI: https://doi.org/10.2478/prolas-2013-0069

Abstract

Birch and maple saps contain carbohydrates and organic acids, B complex vitamins and vitamin C, tannins, flavonoids, glycosides and mineral substances. The aim of the study was to quantitatively determine the concentrations of bioactive compounds and mineral substances in Latvian birch (Betula pendula Roth.) and maple (Acer platanoides L.) saps. Electrical conductivity was determined (629 and 967 S/cm in birch and maple saps, respectively) to characterise the total amount of mineral substances. In birch and maple saps the titratable acidity (0.50 and 0.70 mmol of NaOH per litre of sap, respectively) and formol number (0.25 and 0.20 mmol NaOH per litre of sap, respectively) were determined. The protein concentration was found to be higher in maple sap (171 and 127 mg/l, respectively). The antioxidant concentration, determined using quercetin as a standard, was 0.35 mg of quercetin equivalents (QE)/l in birch sap and 0.77 mg QE/l in maple sap. In conclusion, Latvian maple sap contains more bioactive and mineral compounds than birch sap. Latvian birch sap contains up to 20% more glucose and fructose than birch sap produced in Finland, but Latvian maple sap contains 10 to 40% less sucrose than sap produced in North America.

Abstrakt

Bērzu un kļavu sulas satur ogļhidrātus un organiskās skābes, B grupas vitamīnus un C vitamīnu, flavonoīdus, glikozīdus un minerālvielas. Pētījuma mērķis - noteikt bioloģiski aktīvo savienojumu un minerālvielu saturu Latvijas bērzu (Betula pendula Roth.) un kļavu (Acer platanoides) sulās. Lai raksturotu minerālvielu kopējo daudzumu, tika mērīta elektrovadītspēja (bērzu un kļavu sulās atbilstoši 629 un 967 ļ.tS/cm). Minerālvielu saturs tika noteikts spektrofotometriski. Bērzu un kļavu sulās tika noteikti kopējais skābums (atbilstoši 0,50 un 0,70 mmol NaOH uz litru sulas) un formaldehīdskaitļi (atbilstoši (0.25 and 0.20 mmol NaOH uz litru sulas). Kļavu sula satur vairāk proteīnus nekā bērzu sula (atbilstoši 171 and 127 mg/1). Fruktozes, glikozes un saharozes saturs tika noteikts, izmantojot augstefektīvu šķidrumu hromatogrāfiju. Askorbīnskābes saturs tika noteikts jodometriski. Kā standartvielu izmantojot kvercetīnu, tika raksturots antioksidantu saturs un bērzu sulā tas bija 0,35 ļiig kvercetīna ekvivalentu (QE)/1, bet kļavu sulā 0,77 ng QE/1. Kopumā Latvijas kļavu sula satur vairāk bioloģiski aktīvo savienojumu un minerālvielu nekā bērzu sula.

Keywords : birch sap; maple sap; bioactive compounds; mineral substances

  • Abou-Zaid, M. M., Nozzolillo, C., Tonon, A., Coppens, M., Lombardo, A. (2008). High-performance liquid chromatography and identification of aantioxidant polyphenols in maple syrup. Pharm. Biol., 46 (1-2), 117-125.CrossrefWeb of ScienceGoogle Scholar

  • Ahtonen, S., Kallio, H. (1989). Identification and seasonal variations of amino acids in birch sap used for syrup production. Food Chem., 33 (2), 125-132.CrossrefGoogle Scholar

  • Deslauriers, I. (2000). Recovery, Separation and Characterization of PhenolicCompounds and Flavonoids from Maple Products. Montreal, Quebec: McGill University. 104 pp.Google Scholar

  • Drozdova, G., Demurov, E., Bakhilov, V., Frolov, V. (1995). Some aspects of pharmacological activity of birch sap and birch drag-preparations. In: Terazawa, M. (Ed.). Tree Sap (pp. 85-89). Sapporo: Hokkaido University Press.Google Scholar

  • Gaucher, C., Gougeon, S., Mauffette, Y, Messier, C. (2003). Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings. TreePhysiol., 25, 93-100.Google Scholar

  • González-Sarrías, A., Li, L., Seeram, N.P. (2012). Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells. Phytother. Res., 26 (7), 995-1002.Web of ScienceCrossrefGoogle Scholar

  • Harju, L., Hulden, S. G. (1990). Birch sap as a tool for biogeochemical prospecting: [about micro and macro elements]. J. Geochem. Explor., 37 (3), 351-365.CrossrefGoogle Scholar

  • Jiang, H., Sakamato, Y., Tamai, Y., Terazawa, M. (2001). Proteins in the exudation sap from birch trees, Betula platyphylla Sukatchev var. japonica Hara and Betula verrucosa Her. Eurasian J. For. Res., 2, 59-64.Google Scholar

  • Kallio, H. (1989). Aroma of birch syrup. J. Agric. Food Chem., 37, 1367-1371.CrossrefGoogle Scholar

  • Kallio, H., Ahtonen, S. (1987a) Seasonal variations of the acids in birch sap: [acids in birch sap]. Food Chem., 25 (4), 285-292.CrossrefGoogle Scholar

  • Kallio, H., Ahtonen, S. (1987b). Seasonal variations of the sugars in birch sap: [sugars in birch sap]. Food Chem., 25 (4), 293-304.CrossrefGoogle Scholar

  • Kallio, H., Lahenoja, M., Penttin, R. (1995). Electrophoretic profiles of birch sap proteins of Betula pubescens, B. pendula and B. pendula formaCarelica in Finland with reference to overall composition of sap. In: Terazawa, M. (Ed.). Tree Sap (pp.13-21). Sapporo: Hokkaido University Press.Google Scholar

  • Kallio, H., Ahtonen, S., Raulo, J., Linko, R.R. (1985). Identification of the sugars and acids in birch sap: [about acids and sugars]. J. Food Sci., 50 (1), 266-269.Google Scholar

  • Kallio, H., Karppinen, T., Holmbom, B. (2006). Concentration of birch sap by reverse osmosis. J. Food Sci., 50 (5), 1330-1332.Google Scholar

  • Kallio, H., Rine, S., Pangborn, R.-M., Jennings, W. (1987). Effect of heating on the headspace volatiles of Finnish birch syrup. Food Chem., 24 (4), 287-299.CrossrefGoogle Scholar

  • Kallio H., Teerinen T., Ahtonen, S., Suihko, M., Linko, R. R. (1989). Composition and properties of birch syrup (Betula pubescens). J. Agric. FoodChem., 37, 51-54.Google Scholar

  • Kermasha, S., Goetghebeur, M., Dumont, J. (1995). Determination of phenolic compound profiles in maple products by high-performance liquid chromatography. J. Agric. Food Chem., 43 (3), 708-716.CrossrefGoogle Scholar

  • Kozlowski, T. T, Pallardy, S. G. (1997). Nitrogen metabolism. In: Physiologyof Woody Plants (pp. 189-209). New York: Academic Press.Google Scholar

  • Kuka, M., Cakste, I., Dimins, F., Gersebeka, E. (2010). Determination of phenolic compounds in birch and maple saps. In: Foodinnova 2010, InternationalConference on Food Innovation, 25-29 October 2010. (108 p.) Valencia.Google Scholar

  • Kūka, P. (2008). Pârtikas produktu analîþu fizikâli íîmiskâs metodes [Physical- Chemical Methods of Food Products Analysis]. Jelgava: LLU, 174 lpp.Google Scholar

  • Legault, J., Girard-Lalancette, K., Grenon, C., Dussault, C., Pichette, A. (2010). Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acersaccharum. J. Med. Food, 13 (2), 460-468.CrossrefWeb of ScienceGoogle Scholar

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193 (1), 265-275.Google Scholar

  • Patzold, R., Bruckner, H. (2005). Mass spectometric detection and formation of D-amino acids in processed plant saps, syrups, and fruit juice concentrates. J. Agric. Food Chem., 53, 9722-9729.CrossrefGoogle Scholar

  • Perkins, T. D., van den Berg, A. K. (2009). Maple syrup - production, composition, chemistry, and sensory characteristics. In: Taylor, S. (Ed.). Advancesin Food and Nutrition Research, 56, (pp. 104-140). Amsterdam: Elsevier/Academic Press.Google Scholar

  • Robinson, A. R., MacLean, K. S., MacConnell, H. M. (1989). Heavy metal, pH, and total solid content of maple sap and syrup produced in eastern Canada. J. Assoc. Anal. Chem. 72 (4), 674-679.Google Scholar

  • Sehm, E. (2007). Birkensaft. Das Gesundheitselixier aus der Natur. Norderstedt: Books on Demand GmbH. 52 S.Google Scholar

  • Tanner, H., Brunner, H. R. (1987). Getränke - Analytik. Schwäbisch Hall: Heller Chemie - Verwaltungsgesellschaft mbH, S. 93-94.Google Scholar

  • Theriault, M., Caillet, S., Kermasha, S., Lacroix, M. (2006). Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chem., 98 (3), 490-501.CrossrefGoogle Scholar

  • Wong, B. L., Bagget, K. L., Rye, A. H. (2003.). Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum). Can. J. Bot., 81 (8), 780-788. CrossrefGoogle Scholar

About the article

Published Online: 2013-12-01

Published in Print: 2013-11-01


Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, Volume 67, Issue 4-5, Pages 437–441, ISSN (Print) 1407-009X, DOI: https://doi.org/10.2478/prolas-2013-0069.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in