Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


CiteScore 2016: 0.20

SCImago Journal Rank (SJR) 2016: 0.138
Source Normalized Impact per Paper (SNIP) 2016: 0.217

Open Access
Online
ISSN
1407-009X
See all formats and pricing
More options …
Volume 68, Issue 1-2 (Apr 2014)

Issues

Past human impact and pollutant loading reconstruction in Lake Engure as a tool for lake basin management

Māris Kļaviņš
  • Corresponding author
  • Faculty of Geography and Earth Sciences, University of Latvia, Raiòa bulv.19, LV-1586, Rîga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilga Kokorīte
  • Faculty of Geography and Earth Sciences, University of Latvia, Raiòa bulv.19, LV-1586, Rîga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valērijs Rodinovs
  • Faculty of Geography and Earth Sciences, University of Latvia, Raiòa bulv.19, LV-1586, Rîga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maruta Jankevica
  • Faculty of Geography and Earth Sciences, University of Latvia, Raiòa bulv.19, LV-1586, Rîga, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-31 | DOI: https://doi.org/10.2478/prolas-2014-0003

Abstract

Environmental pollution of lakes and rivers is considered as one of the most important environmental problems. Analysis of nutrient and trace element accumulation in sedimentary phases of lakes can reflect the overall regional pollution level, and the observed accumulation patterns of pollutants in sediment profiles can be used to reconstruct the history of anthropogenic impacts. As pollutants in sediments are associated with other substances, it is important not only to study total concentrations of pollutants, but also their speciation forms. The aim of this study was to describe phosphorus (including speciation forms) and trace element concentrations in sediment profiles of Lake Engure and to evaluate human impact on organic matter accumulation and properties in lake sediments. The concentrations of the studied elements in sediments of Lake Engure are at background levels, which is clearly evident when compared with metal concentrations in lake sediments in West European countries. The analysis of element concentration changes in sedimentary profiles provided information about trends in recent accumulation (within the last 100 years) and on the balance between natural and human-induced accumulation processes. Analysis of nutrient concentrations in sediments aided in identifying background values as targets for lake management activities.

Abstract in Latvian

Upju un ezeru piesārņojums ir uzskatāms par vienu no nozīmīgākajām vides problēmām. Biogēno elementu un toksisko mikroelementu uzkrāšanās nogulumos atspoguļo piesārņojumu sateces baseinā, bet piesārņojošo vielu akumulācijas analīze nogulumu profilos ļauj izsekot cilvēku ietekmes mainībai reģionā. Tomēr, tā kā piesārņojošās vielas ir saistītas ar citām vielām nogulumos, svarīgi ir analizēt ne tikai vielu kopējās koncentrācijas, bet arī to atrašanās formas. Šī pētījuma mērķis ir analizēt fosfora un mikroelementu koncentrācijas un fosfora savienojumu atrašanās formu mainību Engures ezera nogulumu profilos un noteikt antropogēno ietekmju raksturu uz organisko vielu uzkrāšanos un nogulumu īpašībām. Pētīto elementu koncentrācijas Engures ezera nogulumos ir fona koncentrāciju līmenī, īpaši, ja salīdzina ar koncentrācijām Rietumeiropas valstu ūdenstilpju nogulumos. Tomēr elementu koncentrāciju analīze nogulumu profilos ļauj izsekot antropogēnās slodzes intensitātes mainībai pēdējo 100 gadu laikā un pamatot nepieciešamās rīcības ezera ilgtspējīgas apsaimniekošanas risinājumu nodrošināšanai. Biogēno elementu koncentrācijas noteikšana ezera nogulumos ļauj noteikt to fona koncentrāciju līmeņu ezeru kopšanas pasākumu īstenošanai.

Keywords: lake sediments; nutrients; trace and major elements; organic matter

References

  • Anonymous (2005). APHA Standard methods for the examination of water and wastewater. 21st edn. APHA, AWWA, WEF. Baltimore, Maryland. 1368 pp.Google Scholar

  • Anderson, N. J., Rippey, B., Gibson, C. E. (1993). A comparison of sedimentary and diatom-inferred phosphorus profiles: Implications for defining pre-disturbance nutrient conditions. Hydrobiologia, 253, 357-366. Eberhards, G., Saltupe, B. (2000). Geological history, relief, and deposits of the Lake Engures (Engure) area along the Baltic Sea. Proc. Latv. Acad. Sci. Sect. B, 54, 141-147.Google Scholar

  • Bengtsson, L., Enell, M. (1986). Chemical analysis. In: Berglund, B. E. (ed.). Handbook of Holocene Palaeoecology and Palaeohydrology. (pp. 268-316). Oxford University Press: Oxford.Google Scholar

  • Csuros, M., Csuros, C. (2002). Environmental Sampling and Analysis for Metals. Boca Raton: CRC Press. 408 pp.Google Scholar

  • Dean, W. E., Jr. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. J. Sed. Petrol., 44, 242-248.Google Scholar

  • Dearing, J. A., Jones, R. T., Shen, J., Yang, X., Boyle, F., Foster, C., Crook, S., Elvin, M. J. D. (2008). Using multiple archives to understand past and present climate-human-environment interactions: The Lake Erhai catchment, Yunnan Province China. J. Paleolimnol., 40 (1), 3-31.Web of ScienceCrossrefGoogle Scholar

  • Heiri O., Lotter, A. F., Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol., 25, 101-110.CrossrefGoogle Scholar

  • Lepane, V., Morriset, M., Viitak, A., Laane, M., Alliksar, T. (2010). Partitioning of metals between operational fractions in the sediment record from Lake Peipsi. Chem. Ecol., 26, 35-48.CrossrefWeb of ScienceGoogle Scholar

  • Marchetto, A., Musazzi, S. (2001). Comparison between sedimentary and living diatoms in Lago Maggiore (N. Italy): Implications of using transfer functions. J. Limnol., 60 (1), 19-26.Google Scholar

  • Psenner, R., Pucsko, R., Sager, M. (1984). Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten - Versuch einer Definition ökologish wichtiger Fraktionen. Arch. Hydrobiol. Suppl., 70, 111-155.Google Scholar

  • Rasanen, J., Kentitamies, K., Sandman, O. (2007). Paleolimnological assessment of the impact of logging on small boreal lake. Limnologica, 37, 193-207.CrossrefWeb of ScienceGoogle Scholar

  • Renberg, I., Bindler, R., Brannvall, M. L. (2001). Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene, 11 (5), 511-516.CrossrefGoogle Scholar

  • Saunders, K. M., Hodgson, D. A., Harrison, J., McMinn, A. (2008). Palaeoecological tools for improving the management of coastal ecosystems: A case study from Lake King (Gippland Lakes) Australia. J. Paleolimnol., 40 (1), 33-47.CrossrefWeb of ScienceGoogle Scholar

  • Schönhofer, F., Wallner, G. (2001). Very rapid determination of 226Ra, 228Ra and 210Pb by selective adsorption and liquid scintillation counting. Radioactiv. Radiochem., 12, 33-38.Google Scholar

  • Vîksne, J. (1997). The Bird Lake Engure. Rîga: Jâòa sçta. 111 pp.Google Scholar

  • Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. 3rd ed. New York: Academic Press. 1006 pp.Google Scholar

About the article

Received: 2013-09-23

Published Online: 2014-07-31

Published in Print: 2014-04-01


Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., ISSN (Online) 1407-009X, DOI: https://doi.org/10.2478/prolas-2014-0003.

Export Citation

© by Māris Kļaviņš. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in