Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


CiteScore 2016: 0.20

SCImago Journal Rank (SJR) 2016: 0.138
Source Normalized Impact per Paper (SNIP) 2016: 0.217

Open Access
Online
ISSN
1407-009X
See all formats and pricing
More options …
Volume 69, Issue 1-2 (Apr 2015)

Issues

Impact Of Pine (Pinus sylvestris L.) And Spruce (Picea abies (L.) Karst.) Bark Extracts On Important Strawberry Pathogens

PRIEDES (Pinus sylvestris L.) UN EGLES (Picea abies (L.) Karst.) MIZAS EKSTRAKTU IETEKME UZ NOZĪMĪGIEM ZEMEŅU PATOGĒNIEM

Sandra Minova / Rita Sešķēna / Santa Voitkāne / Zane Metla / Māris Daugavietis / Līga Jankevica
Published Online: 2015-07-14 | DOI: https://doi.org/10.1515/prolas-2015-0008

Abstract

Phytopathogenic fungi induced considerable economic losses in strawberry production industry; therefore, more attention should be paid to development and implementation of preventative treatment that is environmentally friendly. Coniferous trees produce a wide variety of compounds, such as terpenoids and phenolics. Several studies are known on fungicidal activity of different components of coniferous tree bark. The aim of this study was to evaluate in vitro pine (Pinus sylvestris L.) and spruce (Picea abies (L.) Karst.) bark ethanol extracts impact on pathogenous fungi causing diseases of strawberries. Products of processed pine (Pinus sylvestris) and spruce (Picea abies) bark were tested. During 2011 to 2013, several in vitro experiments were carried out to test the effectiveness of pine and spruce bark extracts against various phytopathogenic fungi isolated from strawberries: Botrytis cinerea, Colletotrichum acutatum, Phytophthora cactorum and Mycosphaerella fragariae. Radial growth tests showed that coniferous bark extracts inhibit mycelial growth of B. cinerea, C. acutatum, P. cactorum and M. fragariae. Extracts had the highest antifungal effect on B. cinerea two and five days after inoculation (p < 0.05). Bark extracts can reduce the sporulation of B. cinerea, C. acutatum and P. cactorum.

Zemeņu ražu būtiski samazina kaitēkļi un patogēno sēņu izraisītas slimības, tādēļ aizvien vairāk pētījumu tiek veltīti videi draudzīgu augu aizsardzības produktu izveidei. Skuju koki producē dažādus aktīvus savienojumus, piemēram, terpenoīdus un fenolus. Pētījuma mērķis bija novērtēt parastās priedes (Pinus sylvestris L.) un parastās egles (Picea abies (L.) Karst.) ekstraktu antifungālo iedarbību uz zemeņu slimības izraisošām sēnēm in vitro. Laikā no 2011. līdz 2013. gadam veiktas vairākas eksperimentu sērijas, lai pārbaudītu ekstraktu efektivitāti pret zemeņu slimības izraisošām fitopatogēnām sēnēm — Botrytis cinerea, Colletotrichum acutatum, Phytophthora cactorum un Mycosphaerella fragariae. Novērtējām ekstraktu ietekmi uz micēlija augšanu un sporulēšanas intensitāti. Sēņu radiālās augšanas tests parādīja, ka priežu un egļu mizas etanola ekstrakti inhibē B. cinerea, C. acutatum, P. cactorum micēlija augšanu. Pievienojot barotnei ekstraktu devu 20 g L−1 , B. cinerea, C. acutatum un P. cactorum novēro 100% micēlija augšanas inhibēšanu, kas būtiski netšķiras no fungicīda Signum® efektivitātes (p < 0,05). Mūsu rezultāti liecina, ka sēne M. fragariae ir vairāk izturīga pret ekstraktu ietekmi.

Keywords: Botrytis cinerea; Colletotrichum acutatum; Phytophthora cactorum; Mycosphaerella fragariae; inhibition of mycelial growth; inhibition of sporulation

REFERENCES

  • Albouvette, C., Olivain, C., Steinberg, C. (2006). Biological control of plant diseases: The European situation. Eur. J. Plant. Pathol., 114, 329–341.CrossrefGoogle Scholar

  • Alfredsen, G., Solheim, H., Slimestad, R. (2008). Antifungal effect of bark extracts from some European tree species. Eur. J. Forest Res., 127, 387–393.Web of ScienceCrossrefGoogle Scholar

  • Dahlberg, R. K., Van Etten, L. J. (1982). Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopahtol., 20, 281–301.CrossrefGoogle Scholar

  • De los Santos, B., Barrau, C., Romeo, F. (2003). Strawberry fungal diseases. J. Food Agr. Environ., 1 (3–4), 129–132.Google Scholar

  • Deba, F., Xuan, T. D., Yasuda, M., Tawata, S. (2008). Chemical composition and antioxidant, antimicrobial and antifungal activities of the essential oils from Bidens pilosa Linn. var Radiata. Food Control, 19, 346–352.CrossrefGoogle Scholar

  • Fernández-Acero, F. J., Carbś, M., Garrido, C., Vallejo, I., Cantoral, J. M. (2007). Proteomic advances in phytopathogenic fungi. Curr. Proteomics, 4, 79–88CrossrefGoogle Scholar

  • Gottstein, D., Gross, D. (1992). Phytoalexins of woody plants. Trees, 6, 55–68.CrossrefGoogle Scholar

  • Hong, E. J., Na, K. J., Choi, I. G., Choi, K. C., Jeung, E. B. (2004). Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull., 27 (6), 864–866.CrossrefGoogle Scholar

  • Klavina, D., Kiesnere, R. D., Korica, A. M., Arhipova, M, Daugavietis, M., Gaitnieks, T. (2012). Skuju koku mizas ekstraktu ietekmes uz Lophodermium seditiosum micēlija attīstību in vitro novērtējums [Evaluation of impact of pine bark extracts on mycelial growth of Lophodermium seditiosum in vitro]. Mežzinātne, 26 (59), 167–181 (in Latvian).Google Scholar

  • Koul, O., Walia, S., Dhaliwal, G. S. (2008). Essential oils as green pesticides: Potential and constraints. Biopesticides Int., 4 (1), 63–84.Google Scholar

  • Krauze-Baranowska, M., Mardarowicz, M., Wiwart, M., Poblocka, L., Dynowska, M. (2002). Antifungal activity of the essential oils from some species of the genus Pinus. Z. Naturforsch., 57 (c), 478–482.Google Scholar

  • Laugale, V., Daugavietis, M. (2009). Effect of coniferous needle products on strawberry plant development, productivity and spreading of pests and diseases. Acta Hort., 842, 239–242.Google Scholar

  • Ludley, K. E., Robinson, C. H., Jickells, S., Chamberlain, P. M., Whitaker, J. (2008). Differential response of ectomycorrhizal and saprotrophic fungal mycelium from coniferous forest soils to selected monoterpenes. Soil Biol. Biochem., 40 (3), 669–678.CrossrefWeb of ScienceGoogle Scholar

  • Mechnikova, G. Ya. Stepanova, T. A., Zaguzova, E. V. (2007) Quantitative determination of total phenols in strawberry leaves. Pharm. Chem. J., 41 (2), 97–100.CrossrefGoogle Scholar

  • Miclea, R., Puia, C. (2010). In vitro control of the fungus Botrytis cinerea Pers. with plant extracts. Bull. Univ. Agr. Sci. Vet. Med. Cluj-Napoca Agr., 67 (1), 181–186.Google Scholar

  • Motiejunaite, O., Peciulyte, D. (2004). Fungicidal properties of Pinus sylvestris L. for improvement of air quality. Medicina (Kaunas), 40 (8), 287–794.Google Scholar

  • Ngo, T. T. Z., Zhohova, E. V. (2007). Development of an integrated methodology to determine the total flavonoid content in the common motherwort spectrophotometrically [Нго Т. Т. З., Жохова Е. В. Рaзработка методики комплексного определeния суммарного содержания флавоноидов в траве пустырника спектрофотометрическим методом]. Himija Rastitel’nogo Syr’ja [Химия растительного сыръя], 4, 73–77 (in Russian).Google Scholar

  • Ojala, T., Remes, S., Haansuu, P., Vuorela, H., Hiltunen, R., Haahtela, K., Vuorela, P. (2000). Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol., 73, 299–305.CrossrefGoogle Scholar

  • Pan, H., Lundgren, L. N. (1995). Phenolic extractives from root bark of Picea abies. Phytochemistry, 39, 1423–1428.CrossrefGoogle Scholar

  • Pandey, D. K., Tripathi, N. N., Tripathi, R. D., Dixit, S. N. Z. (1982). Fungitoxic and phytotoxic properties of essential oil of Hyptis suaveolens. Pfl. Krankh Pfl. Schutz, 89, 344–349.Google Scholar

  • Pasqualini, V., Robles, C., Garzino, S., Greff, S., Bpousquet-Melou, A., Bonin, G. (2003). Phenolic compounds content in Pinus halepensis Mill. needles: A bioindicator of air pollution. Chemosphere, 52, 239–248.CrossrefGoogle Scholar

  • Paulus, O., A. (1990). Fungal diseases of strawberry. HortScience, 25 (8), 885–888.Google Scholar

  • Rosslenbroich, H. J., Stubler, D. (2000). Botrytis cinerea – history of chemical control and novel fungicides for its management. Crop Prot., 19, 557–561.CrossrefGoogle Scholar

  • Russel, P. E. (1995). Fungicide resistance: Occurrence and management. J. Agr. Sci., 124 (3), 317–323.CrossrefGoogle Scholar

  • Survilienė, E., Valiuškaitė, A., Snieškienė, V., Stankevičienė, A. (2009). Effect of essential oils on fungi isolated from apples and vegetables. Sodininkystė ir Daržininkystė, 28 (3), 227–234.Google Scholar

  • Williamson, B., Tudzynski, B., Tudzynski, P., Van Kan, J. A. L. (2007). Botrytis cinerea: The cause agent of grey mold disease. Mol. Plant Path., 8 (5), 561–580.CrossrefGoogle Scholar

  • Vio-Michaelis, S., Apablaza-Hidalgo, G., Gomez, M., Pena-Vera, R., Montenegro, G. (2012). Antifungal activity of tree Chilean plant extracts on Botrytis cinerea. Bot. Sci., 90 (2), 179–183.Google Scholar

  • Verovkins, A., Neiberte, B., Šāble, I., Zaķis, Ģ., Šuļga, G. (2008). Latvijas raksturīgāko koku sugu mizas ķīmiskais komponentsastāvs [Chemical composition of Latvian wood species bark]. Latvijas Ķīmijas Žurnāls, 2, 195–201 (in Latvian).Google Scholar

  • Zambonelli, A., Zechini d’Aulerio, A., Bianchi, A., Albasini, A. (1996). Effects of essential oil on phytopathogenic fungi. Phytopathology, 144, 491–494.CrossrefGoogle Scholar

  • Zarins, I., Daugavietis, M., Halimona, J. (2009). Biological activity of plant extracts and their application as ecologically harmless biopesticide. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkystė ir daržininkystė, 28 (3), 269–280.Google Scholar

  • Yermakov A. E. (1987). Methods for Biochemical Investigation of Plants [Ермаков, A. E. Методы биохимического исследования растений]. Leningrad: Agropromizdat. 429 pp. (in Russian).Google Scholar

About the article


Received: 2013-12-12

Published Online: 2015-07-14

Published in Print: 2015-04-01


Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., ISSN (Online) 1407-009X, DOI: https://doi.org/10.1515/prolas-2015-0008.

Export Citation

© Sandra Minova et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in