Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


CiteScore 2016: 0.20

SCImago Journal Rank (SJR) 2016: 0.138
Source Normalized Impact per Paper (SNIP) 2016: 0.217

Open Access
Online
ISSN
1407-009X
See all formats and pricing
More options …
Volume 69, Issue 6 (Dec 2015)

Issues

Optimisation of Conditions for Extraction of Biologically Active Compounds from Common Bryophytes in Latvia / Latvijâ Augoðu Briofîtu Ekstrakcijas Apstâkïu Optimizâcijas Ietekme Uz Bioloìiski Aktîviem Sekundârajiem Metabolîtiem

Laura Klaviòa
  • Corresponding author
  • Faculty of Geography and Earth Science, University of Latvia, Raiòa bulv. 19, Rîga, LV-1586, LATVIA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gunta Spriòìe
  • Faculty of Geography and Earth Science, University of Latvia, Raiòa bulv. 19, Rîga, LV-1586, LATVIA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-19 | DOI: https://doi.org/10.1515/prolas-2015-0046

Abstract

Bryophytes are the second largest taxonomic group in the plant kingdom. They contain a high number of biologically active compounds. Studies of their composition are important for understanding evolutionary processes in the plant kingdom. The aim of this study was to assess bryophyte secondary metabolite extraction options and to increase the yields of polyphenols and substances determining the free radical scavenging activity of bryophyte extracts. Similar studies have been conducted using higher plants as model organisms, but not using bryophytes. Comparison of five extraction methods (conventional, Soxhlet extraction, treatment with microwaves, ultrasound, and supercritical CO2 extraction) and several solvents with differing polarity showed microwave-assisted extraction as the most promising approach to obtain highest yields of extractives. The main factors that contributed to the efficiency of extraction were type of solvent, temperature, and the solvent to bryophyte mass ratio. The extracts obtained from bryophytes had remarkable antioxidant activity, the extent of which depended on the extraction conditions and bryophyte species. The extraction conditions can be optimised, and the total polyphenol content can be increased by up to 50% in comparison with the conventional approach.

Keywords: bryophyte chemistry; extraction optimisation; supercritical CO2 extraction; microwave- assisted extraction; polyphenols; antiradical activity

References

  • Asakawa, Y., Ludwiczuk, A., Nagashima, F. (2013). Chemical Constituents of Bryophytes: Bio- and chemical diversity, biological activity, and chemosystematics. Springer, Wien. 796 pp.Google Scholar

  • Asakawa, Y. (2007). Biologically active compounds from bryophytes. Pure Appl. Chem., 79 (4), 557-580.CrossrefWeb of ScienceGoogle Scholar

  • Balance, S., Kristiansen, K., Holt, J., Christensen, B. (2008). Interactions of polysaccharides extracted by mild acid hydrolysis from the leaves of Sphagnum papillosum with phenylhydrazine, o-phenylenediamine and its oxidation products or collagen. Carbohyd. Polym., 71 (4), 550-558.Web of ScienceCrossrefGoogle Scholar

  • Basile, A., Giordano, S., López- Sáez, J. A., Cobianchi, R. C. (1999). Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry, 52, 1479-1482.CrossrefGoogle Scholar

  • Bucar, F., Wube, A., Schmid, M. (2013). Natural product isolation-how to get from biological material to pure compounds. Natural Product Rep., 30, 525-545.Google Scholar

  • Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., Martens, S. (2013) Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem., 72, 1-20.Web of ScienceGoogle Scholar

  • Fu, P., Lin, S., Shan, L., Lu, M., Shen, Y. H., Tang, J., Liu, R. H., Zhang, X., Zhu R. L., Zhang, W. D. (2012). Constituents of the moss Polytrichum commune. J. Nat. Prod., 72, 1335-1337.CrossrefWeb of ScienceGoogle Scholar

  • Glime, J. M. (2007). Bryophyte Ecology. Physiological Ecology. Ebook. Michigan Technological University, International Association of Bryologists. Vol. 1. Available at: http://www.bryoecol.mtu.edu (accessed 02.03.2012).Google Scholar

  • Goffinet, B., Shaw, A. J. (2008). Bryophyte Biology. Cambridge University Press: Cambridge. 479 pp.Google Scholar

  • Hotson, J. W. (1921). Sphagnums used as surgical dressing in Germany during World War (concluded). The Bryologist, 24, 89-96.Google Scholar

  • Huang, X., Xue, J., Zhang, J., Qin, Y., Meyers, P. A., Wang, H. (2012). Effect of different wetness conditions on Sphagnum lipid composition in the Erxianyan peatland, central China. Org. Geochem., 44, 1-7.Web of ScienceCrossrefGoogle Scholar

  • Krzaczkowski, L., Wright, M., Reberioux, D., Massiot, G., Etievant, C., Gairin, J. E. (2009). Pharmacological screening of bryophyte extracts that inhibit growth and induce abnormal phenotypes in human HeLa cancer cells. Fund. Clin. Pharmacol., 23, 473-482.Web of ScienceCrossrefGoogle Scholar

  • Maksimova, V., Klavina, L., Bikovens, O., Zicmanis, A., Purmalis, O. (2013). Structural characterization and chemical classification of some bryophytes found in Latvia. Chem. Biodivers., 10 (7), 1284-1294.CrossrefGoogle Scholar

  • Narwal, S. S., Szajdak, L., Sampietro, D. A. (eds.) (2011). Research Methods in Plant Science. Vol. 1. Soil allelochemicals. USA, Studium Press LTD. 310 pp.Google Scholar

  • Orlov, D. S., Sadovnikova, L. K. (2005). Soil organic matter and protective functions of humic substances in the biosphere. In: Perminova, I. V., Hattfield, K., Hertkorn, N. (eds.). Use of Humic Substances to Remediate Polluted Environments: From theory to practice. Springer, pp. 37-52.Google Scholar

  • Saboljevic, A., Sokovic, M., Glamoèlija, J., Èiriè, A., Vujièic, M., Pejin, B., Saboljevic, M. (2010). Comparison of extract bio-activities of in-situ and in vitro grown selected bryophyte species. Afr. J. Microbiol. Res., 4 (9), 808-812.Google Scholar

  • Silverstein, R. M., Webster, F. X., Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds. 7th ed. Wiley, Hoboken. 464 pp.Google Scholar

  • Singh, M., Govindarajan, R., Nath, V., Rawat, A. K. S., Mehrotra, S. (2006). Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. J. Ethnopharmacol., 107, 67-72.CrossrefGoogle Scholar

  • Singleton, V. L., Orthorfer, R., Lamuel-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol., 299, 152-178.Google Scholar

  • Spjut, R. W., Suffness, M., Cragg, G. M., Norris, D. H. (1986). Mosses, liverworts and hornworts screened for antitumor agents. Econ. Bot., 40 (3), 310-338.CrossrefGoogle Scholar

  • Strazdiòa, L., Liepiòa, L., Meþaka, A., Madþule, L. (2011). Sûnu ceïvedis dabas pçtniekiem [Moss Guide for Nature Researchers]. LU Akadçmiskais apgâds, Rîga. 126 pp.Google Scholar

  • Üçüncü, O., Cansu, T. B., Özdemir, T., Alpay-Karaoðlu, Þ., Yayli, N. (2010). Chemical composition and antimicrobial activity of the essential oils of mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb.) from Turkey. Turkish J. Chem., 34, 825-834.Web of ScienceGoogle Scholar

  • Wang, X. N., Yu, W. T., Lou, H. X. (2005). Antifungal constituents from the Chinese moss Homalia trichomanoides. Chem. Biodivers., 2, 139-145.CrossrefGoogle Scholar

  • Xie, C. F., Lou, H. X. (2009. Secondary metabolites in bryophytes: An ecological aspect Chem. Biodivers., 6, 303-312.Web of ScienceCrossrefGoogle Scholar

  • Zinsmeister, H. D., Mues, R. (eds.) (1990). Bryophytes: Their Chemistry and Chemical Taxonomy. Oxford University Press, Oxford.Google Scholar

About the article

Received: 2015-06-08

Published Online: 2016-02-19

Published in Print: 2015-12-01


Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., ISSN (Online) 1407-009X, DOI: https://doi.org/10.1515/prolas-2015-0046.

Export Citation

© by Laura Klaviòa. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in