[1]

Clarke J, Braginski AI. editors. The SQUID Handbook, volume I: Fundamentals and Technology of SQUIDs and SQUID systems. Wiley-VCH, Weinheim, 2004. Google Scholar

[2]

Kleiner R, Koelle D, Ludwig F, Clarke J. Superconducting qantum interference devices: State-of-the-art and applications. Proc. IEEE 92:1534–1548, 2004. CrossrefGoogle Scholar

[3]

Clarke J, Braginski AI. (eds.) The SQUID Handbook, volume II: Applications of SQUIDs and SQUID Systems. Wiley-VCH, Weinheim, 2006. Google Scholar

[4]

Gurvitch M, Washington MA, Huggins HA. High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42:472–474, 1983. CrossrefGoogle Scholar

[5]

Voss RF, Laibowitz RB, Broers AN. Niobium nanobridge dc SQUID. Appl. Phys. Lett. 37:656–658, 1980. CrossrefGoogle Scholar

[6]

Broers AN, Molzen WW, Cuomo JJ, Wittels ND. Electron-beam fabrication of 80 metal structures. Appl. Phys. Lett. 29:596–598, 1976. Crossref

[7]

Tesche CD, Clarke J. DC SQUID: Noise and optimization. J. Low Temp. Phys. 29:301–331, 1977. CrossrefGoogle Scholar

[8]

Koch RH, Van Harlingen DJ, Clarke J. Quantum noise theory for the dc SQUID. Appl. Phys. Lett 38:380–382, 1981. CrossrefGoogle Scholar

[9]

Ketchen MB, Kopley T, Miniature Ling H. SQUID susceptometer. Appl. Phys. Lett. 44:1008–1010, 1984. CrossrefGoogle Scholar

[10]

Rogers FP. A device for experimental observation of flux vortices trapped in superconducting thin films. PhD thesis, MIT, Cambridge, MA, 1983. Google Scholar

[11]

Wernsdorfer W, Hasselbach K, Mailly D, Barbara B, Benoit A, Thomas L, Suran G. DC-SQUID magnetization measurements of single magnetic particles. J. Magn. Magn. Mat. 145:33–39, 1995. CrossrefGoogle Scholar

[12]

Wernsdorfer W. Classical and quantum magnetization reversal studied in nanometersized particles and clusters. Adv. Chem. Phys. 118:99–190, 2001. Google Scholar

[13]

Kirtley JR. Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys. 73:126501, 2010. Google Scholar

[14]

Granata C, Vettoliere A. Nano superconducting quantum interference device: A powerful tool for nanoscale investigations. Phys. Rep. 614:1–69, 2016. CrossrefGoogle Scholar

[15]

Schäfer-Nolte E, Schlipf L, Ternes M, Reinhard F, Kern K, Wrachtrup J. Tracking temperature-dependent relaxation times of ferritin nanomagnets with a wideband quantum spectrometer. Phys. Rev. Lett. 113:217204, 2014. Google Scholar

[16]

Thiel L, Rohner D, Ganzhorn M, Appel P, Neu E, Müller B, Kleiner R, Koelle D, Maletinsky P. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nat. Nano. 11:677–681, 2016. CrossrefGoogle Scholar

[17]

Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets. ACS Nano 7:6225–6236, 2013. PubMedCrossrefGoogle Scholar

[18]

Lipert K, Bahr S, Wolny F, Atkinson P, Weißker U, Mühl T, Schmidt OG, Büchner B, Klingeler R. An individual iron nanowire-filled carbon nanotube probed by micro-Hall magnetometry. Appl. Phys. Lett. 97:212503, 2010. Google Scholar

[19]

Superfluids London F. Wiley, New York, 1950.

[20]

Josephson BD. Possible new effects in superconductive tunneling. Phys. Lett. 1:251–253, 1962. CrossrefGoogle Scholar

[21]

Anderson PW, Rowell JM. Probable observation of the Josephson superconducting tunneling effect. Phys. Rev. Lett. 10:230–232, 1963. CrossrefGoogle Scholar

[22]

Likharev KK. Superconducting weak links. Rev. Mod. Phys. 51:101–159, 1979. CrossrefGoogle Scholar

[23]

Stewart WC. Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett 12:277–280, 1968. CrossrefGoogle Scholar

[24]

McCumber DE. Effect of ac impedance of dc voltage-current characteristics of Josephson junctions. J. Appl. Phys. 39:3113–3118, 1968. CrossrefGoogle Scholar

[25]

Chesca B, Kleiner R, and Koelle D, Theory SQUID. In Clarke J, Braginski AI. editors, The SQUD Handbook, volume I: Fundamentals and Technology of SQUIDs and SQUID systems, chapter 2, pages 29–92. Wiley-VCH, Weinheim, 2004. Google Scholar

[26]

Jaklevic RC, Lambe J, Silver AH, Mercereau JE. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12:159–160, 1964. CrossrefGoogle Scholar

[27]

Soloviev II, Klenov NV, Schegolev AE, Bakurskiy SV and Kupriyanov MYu, Analytical derivation of DC SQUID response. Supercond. Sci. Technol. 29:094005, 2016. Google Scholar

[28]

Kleiner R, and Koelle D, Basic Properties of Superconductivity. In Clarke J, Braginski AI. editors, The SQUD Handbook, volume I: Fundamentals and Technology of SQUIDs and SQUID systems, chapter Appendix 1, pages 357–366. Wiley-VCH, Weinheim, 2004. Google Scholar

[29]

Koelle D, Kleiner R, Ludwig F, Dantsker E. and John Clarke. High-transition-temperature superconducting quantum interference devices. Rev. Mod. Phys. 71:631–686, 1999. Google Scholar

[30]

Koch RH, DiVincenzo DP, Clarke J. Model for *1/f* flux noise in SQUIDs and qubits. Phys. Rev. Lett. 98:267003, 2007. Google Scholar

[31]

Sendelbach S, Hover D, Kittel A, Mück M, Martinis JM, McDermott R. Magnetism in SQUIDs at millikelvin temperatures. Phys. Rev. Lett. 100:227006, 2008. Google Scholar

[32]

Bluhm H, Bert JA, Koshnick NC, Huber ME, Moler KA. Spinlike susceptibility of metallic and insulating thin films at low temperature. Phys. Rev. Lett. 103:026805, 2009. Google Scholar

[33]

Martínez-Pérez MJ, Sesé J, Luis F, Córdoba R, Drung D, Schurig T, Bellido E, de Miguel R, Gómez-Moreno C, Lostao A, Ruíz-Molina D. Ultrasensitive broad band SQUID microsusceptometer for magnetic measurements at very low temperatures. IEEE Trans. Appl. Supercond. 21:345–348, 2011. CrossrefGoogle Scholar

[34]

Martínez-Pérez MJ, Sesé J, Luis F, Drung D, Note: Schurig T. Highly sensitive superconducting quantum interference device microsusceptometers operating at high frequencies and very low temperatures inside the mixing chamber of a dilution refrigerator. Rev. Sci. Instr. 81:016108, 2010. Google Scholar

[35]

Wellstood FC, Urbina C, Clarke J. Hot-electron effects in metals. Phys. Rev. B 49:5942–5955, 1994. CrossrefGoogle Scholar

[36]

Drung D, and Mück M, Electronics SQUID. In Clarke J, Braginski AI. editors, The SQUD Handbook, volume I: Fundamentals and Technology of SQUIDs and SQUID Systems, chapter 4, pages 127–170. Wiley-VCH, Weinheim, 2004. Google Scholar

[37]

Wernsdorfer W. From micro- to nano-SQUIDs: applications to nanomagnetism. Supercond. Sci. Technol. 22:064013, 2009. Google Scholar

[38]

Russo R, Granata C, Esposito E, Peddis D, Cannas C, Vettoliere A. Nanoparticle magnetization measurements by a high sensitive nano-superconducting quantum interference device. Appl. Phys. Lett. 101:122601, 2012. Google Scholar

[39]

Granata C, Russo R, Esposito E, Vettoliere A, Russo M, Musinu A, Peddis D, Fiorani D. Magnetic properties of iron oxide nanoparticles investigated by {nanoSQUIDs. Eur. Phys. J. B 86:272, 2013. Google Scholar

[40]

Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V, Mélinon P, Pérez A. Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 86:4676–4679, 2001. PubMedCrossrefGoogle Scholar

[41]

Hatridge M, Vijay R, Slichter DH, John Clarke, Siddiqi I. Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Phys. Rev. B 83:134501, 2011. Google Scholar

[42]

Levenson-Falk EM, Vijay R, Antler N, Siddiqi I. A dispersive nanoSQUID magnetometer for ultra-low noise, high bandwidth flux detection. Supercond. Sci. Technol. 26:055015, 2013. Google Scholar

[43]

Ketchen MB, Awschalom DD, Gallagher WJ, Kleinsasser AW, Sandstrom RL, Rozen JR, Design Bumble B., fabrication, and performance of integrated miniature SQUID susceptometers. IEEE Trans. Magn. 25:1212–1215, 1989. CrossrefGoogle Scholar

[44]

Bouchiat V. Detection of magnetic moments using a nano-SQUID: limits of resolution and sensitivity in near-field SQUID magnetometry. Supercond. Sci. Technol. 22:064002, 2009. Google Scholar

[45]

Tilbrook DL. NanoSQUID sensitivity for isolated dipoles and small spin populations. Supercond. Sci. Technol 22:064003, 2009. Google Scholar

[46]

Nagel J, Konovalenko KB, Kemmler M, Turad M, Werner R, Kleisz E, Menzel S, Klingeler R, Büchner B, Kleiner R, Koelle D. Resistively shunted YBa^{2}Cu^{3}O^{7} grain boundary junctions and low-noise SQUIDs patterned by a focused ion beam down to 80 nm linewidth. Supercond. Sci. Technol. 24:015015, 2011.

[47]

Nagel J, Kieler OF, Weimann T, Wölbing R, Kohlmann J, Zorin AB, Kleiner R, Koelle D, Kemmler M. Superconducting quantum interference devices with submicron Nb/HfTi/Nb junctions for investigation of small magnetic particles. Appl. Phys. Lett. 99:032506, 2011. Google Scholar

[48]

Nagel J, Buchter A, Xue F, Kieler OF, Weimann T, Kohlmann J, Zorin AB, Rüffer D, Russo-Averchi E, Huber R, Berberich P, Fontcuberta i Morral A, Grundler D, Kleiner R, Koelle D, Poggio M, Kemmler M. Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID. Phys. Rev. B 88:064425, 2013. Google Scholar

[49]

Schwarz T, Nagel J, Wölbing R, Kemmler M, Kleiner R, Koelle D. Low-noise nano superconducting quantum interference device operating in tesla magnetic fields. ACS Nano 7:844–850, 2013. PubMedCrossrefGoogle Scholar

[50]

Schwarz T, Wölbing R, Reiche CF, Müller B, Martínez-Pérez MJ, Mühl T, Büchner B, Kleiner R, Low-noise Koelle D. YBa^{2}Cu^{3}O^{7} nano-SQUIDs for performing magnetization-reversal measurements on magnetic nanoparticles. Phys. Rev. Appl. 3:044011, 2015. Crossref

[51]

Wölbing R, Nagel J, Schwarz T, Kieler O, Weimann T, Kohlmann J, Zorin AB, Kemmler M, Kleiner R, Koelle D. Nb nano superconducting quantum interference devices with high spin sensitivity for operation in magnetic fields up to 0.5 T. Appl Phys. Lett. 102:192601, 2013. Google Scholar

[52]

Wölbing R, Schwarz T, Müller B, Nagel J, Kemmler M, Kleiner R, Koelle D. Optimizing the spin sensitivity of grain boundary junction nanoSQUIDs – towards detection of small spin systems with single-spin resolution. Supercond. Sci. Technol. 27:125007, 2014. Google Scholar

[53]

Josephs-Franks P, Hao L, Tzalenchuk A, Davies J, Kazakova O, Gallop JC, Brown L, Macfarlane JC. Measurement of the spatial sensitivity of miniature SQUIDs using magnetic-tipped STM. Supercond. Sci. Technol. 16:1570–1574, 2003. CrossrefGoogle Scholar

[54]

Gardner BW, Wynn JC, Björnsson PG, Straver EWJ, Moler KA, Kirtley JR, Ketchen MB. Scanning superconducting quantum interference device susceptometry. Rev. Sci. Instr. 72:2361–2364, 2001. CrossrefGoogle Scholar

[55]

Huber ME, Koshnick NC, Bluhm H, Archuleta LJ, Azua T, Björnsson PG, Gardner BW, Halloran ST, Lucero EA, Moler KA. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum., 79(5):053704, 2008. CrossrefPubMedGoogle Scholar

[56]

Drung D, Aßmann C, Beyer J, Kirste A, Peters M, Ruede F, Schurig Th. Highly sensitive and easy-to-use SQUID sensors. IEEE Trans. Appl. Supercond. 17:699–702, 2007. CrossrefGoogle Scholar

[57]

Martínez-Pérez MJ, Sesé J, Córdoba R, Luis F, Drung D, Schurig T. Circuit edit of superconducting microcircuits. Supercond. Sci. Technol 22:125020, 2009. Google Scholar

[58]

Drung D, Storm J-H, Ruede F, Kirste A, Regin M, Schurig T, Repollés AM, Sesé J, Luis F. Thin-film microsusceptometer with integrated nanoloop. IEEE Trans. Appl. Supercond. 24:1600206, 2014. Google Scholar

[59]

Schurig Making T. SQUIDs a practical tool for quantum detection and material characterization in the micro- and nanoscale. J. Phys.: Conf. Ser. 568:032015, 2014. Google Scholar

[60]

Schmelz M, Stolz R, Zakosarenko V, Anders S, Fritzsch L, Roth H, Meyer H-G. Highly sensitive miniature SQUID magnetometer fabricated with cross-type Josephson tunnel junctions. Physica C 476:77–80, 2012. CrossrefGoogle Scholar

[61]

Schmelz M, Matsui Y, Stolz R, Zakosarenko V, Schönau T, Anders S, Linzen S, Itozaki H, Meyer H-G. Investigation of all niobium nano-SQUIDs based on sub-micrometer cross-type Josephson junctions. Supercond. Sci. Technol. 28:015004, 2015. Google Scholar

[62]

Hagedorn D, Kieler O, Dolata R, Behr R, Müller F, Kohlmann J, Niemeyer J. Modified fabrication of planar sub-¶m superconductor-normal metal-superconductor Josephson junctions for use in a Josephson arbitrary waveform synthesizer. Supercond. Sci. Technol. 19:294–298, 2006. CrossrefGoogle Scholar

[63]

Bechstein S, Ruede F, Drung D, Storm J-H, Kieler OF, Kohlmann J, Weimann T, Schurig T. HfTi-nanoSQUID gradiometers with high linearity. Appl. Phys. Lett. 106:072601, 2015. Google Scholar

[64]

Martínez-Pérez MJ, Gella D, Müller B, Morosh V, Wölbing R, Sesé J, Kieler O, Kleiner, Koelle D. Three-axis vector vector nano superconducting quantum interference device. ACS Nano 10:8308–8315, 2016. CrossrefPubMedGoogle Scholar

[65]

Granata C, Vettoliere A, Russo R, Fretto M, De Leo N, Lacquaniti V. Three-dimensional spin nanosensor based on reliable tunnel Josephson nano-junctions for nanomagnetism investigations. Appl. Phys. Lett. 103:102602, 2013. Google Scholar

[66]

Anderson PW, Dayem AH. Radio-frequency effects in superconducting thin film bridges. Phys. Rev. Lett. 13:195–197, 1964. CrossrefGoogle Scholar

[67]

Hasselbach K, Veauvy C, Mailly D. MicroSQUID magnetometry and magnetic imaging. Physica C 332:140–147, 2000. CrossrefGoogle Scholar

[68]

Faucher M, Fournier T, Pannetier B, Thirion C, Wernsdorfer W, Villegier JC, Bouchiat V. Niobium and niobium nitride SQUIDs based on anodized nanobridges made with an atomic force microscope. Physica C 368:211–217, 2002. CrossrefGoogle Scholar

[69]

Veauvy C, Hasselbach K, Mailly D. Scanning mu-superconduction quantum interference device force microscope. Rev. Sci. Instr. 73:3825–3830, 2002. CrossrefGoogle Scholar

[70]

Granata C, Vettoliere A, Russo R, Esposito E, Russo M, Ruggiero B. Supercurrent decay in nano-superconducting quantum interference devices for intrinsic magnetic flux resolution. Appl. Phys. Lett. 94:062503, 2009. Google Scholar

[71]

Hazra D, Kirtley JR, Hasselbach K. Nano-superconducting quantum interference devices with continuous read out at milliKelvin temperatures. Appl. Phys. Lett. 103:093109, 2013. Google Scholar

[72]

Troeman AGP, Derking H, Borger B, Pleikies J, Veldhuis D, NanoSQUIDs Hilgenkamp H. based on niobium constrictions. Nano Lett. 7:2152–2156, 2007. CrossrefGoogle Scholar

[73]

Vijay R, Sau JD, Cohen ML, Siddiqi I. Optimizing anharmonicity in nanoscale weak link Josephson junction oscillators. Phys. Rev. Lett. 103:087003, 2009. Google Scholar

[74]

Bouchiat V, Faucher M, Thirion C, Wernsdorfer W, Fournier T, Pannetier B. Josephson junctions and superconducting quantum interference devices made by local oxidation of niobium ultrathin films. Appl. Phys. Lett. 79:123–125, 2001. CrossrefGoogle Scholar

[75]

Vijay R, Levenson-Falk EM, Slichter DH, Siddiqi I. Approaching ideal weak link behavior with three dimensional aluminum nanobridges. Appl. 96:223112, 2010. Google Scholar

[76]

Antler N, Levenson-Falk EM, Naik R, Sun Y-D, Narla A, Vijay R, Siddiqi I. In-plane magnetic field tolerance of a dispersive aluminum nanobridge SQUID magnetometer. Appl. Phys. Lett. 102:232602, 2013. Google Scholar

[77]

Hazra D, Kirtley JR, Hasselbach K. Nano-superconducting quantum interference devices with suspended junctions. Appl. Phys. Lett. 104:152603, 2014. Google Scholar

[78]

Lam SKH, Tilbrook DL. Development of a niobium nanosuperconducting quantum interference device for the detection of small spin populations. Appl. Phys. Lett. 82:1078–1080, 2003. CrossrefGoogle Scholar

[79]

Lam SKH. Noise properties of SQUIDs made from nanobridges. Supercond. Sci. Technol., 19(9):963–967, 2006. CrossrefGoogle Scholar

[80]

Lam SKH, Clem JR, Yang W. A nanoscale SQUID operating at high magnetic fields. Nanotechnology 22:455501, 2011. Google Scholar

[81]

Vohralik PF, Lam SKH. NanoSQUID detection of magnetization from ferritin nanoparticles. Supercond. Sci. Technol. 22:064007, 2009. Google Scholar

[82]

Hao L, Macfarlane JC, Gallop JC, Cox D, Beyer J, Drung D, Schurig T. Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam. Appl. Phys. Lett., 92(19):192507, 2008. CrossrefGoogle Scholar

[83]

Blois A, Rozhko S, Hao L, Gallop JC, Romans EJ. Proximity effect bilayer nano superconducting quantum interference devices for millikelvin magnetometry. J. Appl. Phys. 114:233907, 2013. Google Scholar

[84]

Hao L, Aßmann C, Gallop JC, Cox D, Ruede F, Kazakova O, Josephs-Franks P, Drung D, Schurig Th. Detection of single magnetic nanobead with a nano-superconducting quantum interference device. Appl. Phys. Lett. 98:092504, 2011. Google Scholar

[85]

Chen L, Wernsdorfer W, Lampropoulos C, Christou G, Chiorescu I. On-chip SQUID measurements in the presence of high magnetic fields. Nanotechnology 21:405504, 2010. Google Scholar

[86]

Mandal S, Bautze T, Williams OA, Naud C, É Bustarret, Omnès F, Rodière P, Meunier T, Bäuerle C, Saminadayar L. The diamond superconducting quantum interference device. ACS Nano 5:7144–7148, 2011. CrossrefPubMedGoogle Scholar

[87]

Finkler A, Segev Y, Myasoedov Y, Rappaport ML, Ne’eman L, Vasyukov D, Zeldov E, Huber ME, Martin J, Yacoby A. Self-aligned nanoscale SQUID on a tip. Nano Lett. 10:1046–1049, 2010. CrossrefPubMedGoogle Scholar

[88]

Vasyukov D, Anahory Y, Embon L, Halbertal D, Cuppens J, Ne’eman L, Finkler A, Segev Y, Myasoedov Y, Rappaport ML, Huber ME, Zeldov E. A scanning superconducting quantum interference device with single electron spin sensitivity. Nature Nanotechnol. 8:639–644, 2013. CrossrefGoogle Scholar

[89]

Cleuziou J-P, Wernsdorfer W, Bouchiat V, Ondarçuhu T, Monthioux M. Carbon nanotube superconducting quantum interference device. Nature Nanotech. 1:53–59, 2006. CrossrefGoogle Scholar

[90]

Girit C, Bouchiat V, Naaman O, Zhang Y, Crommie MF, Zettl A, Siddiqi I. Tunable graphene dc superconducting quantum interference device. Nano Lett. 9:198–199, 2009. CrossrefPubMedGoogle Scholar

[91]

Angers L, Chiodi F, Montambaux G, Ferrier M, Guéron S, Bouchiat H, Cuevas JC. Proximity dc SQUIDs in the long-junction limit. Phys. Rev. B 77:165408, 2008. Google Scholar

[92]

Spathis P, Biswas S, Roddaro S, Sorba L, Giazotto F, Beltram F. Hybrid InAs nanowire–vanadium proximity SQUID. Nanotechnology 22:105201, 2011. Google Scholar

[93]

Giazotto F, Peltonen JT, Meschke M, Pekola JP. Superconducting quantum interference proximity transistor. Nature Phys. 6:254–259, 2010. CrossrefGoogle Scholar

[94]

Jabdaraghi RN, Meschke M, Pekola JP. Non-hysteretic superconducting quantum interference proximity transistor with enhanced responsivity. Appl. Phys. Lett. 104:802601, 2014. Google Scholar

[95]

Ronzani A, Altimiras C, Giazotto F. Highly sensitive superconducting quantum-interference proximity transistor. Phys. Rev. Applied 2:024005, 2014. Google Scholar

[96]

Alidoust M, Halterman and Linder J. Singlet-Triplet Superconducting Quantum Magnetometer. Phys. Rev. B 88: 075435 2013 Google Scholar

[97]

Arpaia R, Arzeo M, Nawaz S, Charpentier S, Lombardi F, Bauch T. Ultra low noise YBa_{2}Cu_{3}O_{7-δ} nano superconducting quantum interference devices implementing nanowires. App. Phys. Lett. 104:072603, 2014.

[98]

Hilgenkamp H, Mannhart J. Grain boundaries in high-T_{c} superconductors. Rev. Mod. Phys. 74:485–549, 2002. CrossrefGoogle Scholar

[99]

Tafuri F, Kirtley JR. Weak links in high critical temperature superconductors. Rep. Prog. Phys. 68:2573–2663, 2005. CrossrefGoogle Scholar

[100]

Tafuri F, Massarotti D, Galletti L, Stornaiuolo D, Montemurro D, Longobardi L, Lucignano P, Rotoli G, Pepe GP, Tagliacozzo A, Lombardi F. Recent achievements on the physics of high-T_{c} superconductor Josephson junctions: Background, perspectives and inspiration. J. Supercond. Nov. Magn. 26:21–41, 2013. CrossrefGoogle Scholar

[101]

Cybart SA, Cho EY, Wong JT, Wehlin BH, Ma MK, Huynh C, Dynes RC. Nano Josephson superconducting tunnel junctions in YBaCu^{3}O^{7}–δ directly patterned with a focused helium ion beam. Nat. Nanotechnol. 10:598–602, 2015. CrossrefPubMed

[102]

Cho EY, Ma MK, Huynh Chuong, Pratt K, Paulson DN, Glyantsev VN, Dynes RC, Cybart SA. YBaCu^{3}O^{7}–δ superconducting quantum interference devices with metallic to insulating barriers written with a focused helium ion beam. Appl. Phys. Lett. 106:252601, 2015. Crossref

[103]

Magnetic nanoparticles. MRS Bulletin, 38(11), 2013. issue 11. Google Scholar

[104]

Bartolomé J, Luis F, Fernández JF. editors. Molecular Magnets. Physics and Applications. Springer-Verlag, Berlin Heidelberg, 2014.

[105]

Leuenberger MN, Loss D. Quantum computing in molecular magnets. Nature 410:789–793, 2001. PubMedCrossrefGoogle Scholar

[106]

Bogani L, Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nature Materials 7:179–186, 2008. CrossrefPubMedGoogle Scholar

[107]

Wernsdorfer W, Bonet Orozco E, Hasselbach K, Benoit A, Barbara B, Demoncy N, Loiseau A, Pascard H, Mailly D. Experimental evidence of the Néel-Brown model of magnetization reversal. Phys. Rev. Lett. 78:1791–1794, 1997. CrossrefGoogle Scholar

[108]

Wernsdorfer W, Hasselbach K, Benoit A, Wernsdorfer W, Barbara B, Mailly D, Tuaillon J, Perez JP, Dupuis V, Dupin JP, Guiraud G, Perex A. High sensitivity magnetization measurements of nanoscale cobalt clusters. J. Appl. Phys. 78:7192–7195, 1995. CrossrefGoogle Scholar

[109]

Jamet M, Dupuis V, Mélinon P, Guiraud G, Pérez A, Wernsdorfer W, Traverse A, Baguenard B. Structure and magnetism of well defined defined cobalt nanoparticles embedded in a niobium matrix. Phys. Rev. B 62:493–499, 2000. CrossrefGoogle Scholar

[110]

Córdoba R, Sesé J, De Teresa JM, Ibarra MR. High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87:1550–1553, 2010. CrossrefGoogle Scholar

[111]

Martínez-Pérez MJ,Müller B, Schwebius D, Korinski D, Kleiner R, Sesé J and Koelle D. NanoSQUID magnetometry of individual individual cobalt nanoparticles grown by focused electron beam induced deposition. Supercond. Sci. Technol. 30:024003, 2017. Google Scholar

[112]

Martin M, Roschier L, Hakonen P, Ü Parts, Paalanen M, Schleicher B, Kauppinen EI. Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy. Appl. Phys. Lett. 73:1505–1507, 1998. CrossrefGoogle Scholar

[113]

Pakes CI, George DP, Ramelow S, Cimmino A, Jamieson DN, Prawer S. Manipulation of single magnetic protein particles using atomic force microscopy. J. Magn. Magn. Mater., 272–276:E1231–E1233, 2004. Google Scholar

[114]

Gella D. Master’s thesis, University of Zaragoza, 2015. Google Scholar

[115]

Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. “dip-pen” nanolithography. Science 283:661–663, 1999. PubMedCrossrefGoogle Scholar

[116]

Bellido E, de Miguel R, Ruiz-Molina D, Lostao A, Maspoch D. Controlling the number of proteins with dip-pen nanolithography. Adv. Mater. 22:352–355, 2010. PubMedCrossrefGoogle Scholar

[117]

Martínez-Pérez MJ, Bellido E, de Miguel R, Sesé J, Lostao A, Gómez-Moreno C, Drung D, Schurig T, Ruiz-Molina D, Luis Luis F. F. Alternating current magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a micro superconducting quantum interference device. Appl. Phys. Lett. 99:032504, 2011. Google Scholar

[118]

Bellido E, González-Monje P, Repollés A, Jenkins M, Sesé J, Drung D, Schurig T, Awaga K, Luis F, Ruiz-Molina D. Mn_{12} single molecule magnets deposited on Δ-SQUID sensors: the role of interphases and structural modifications. Nanoscale 5:12565–12573, 2013. PubMedCrossrefGoogle Scholar

[119]

Jenkins M, Gella D, Repollés A, Roubeau O, Aromí G, Drung D, Schurig T, Pallarés MC, Sesé J, Lostao AI, Luis F. 2015. unpublished.

[120]

Buchter A, Nagel J, Rüffer D, Xue F, Weber DP, Kieler OF, Weimann T, Kohlmann J, Zorin AB, Russo-Averchi E, Huber R, Berberich P, Fontcuberta i Morral A, Kemmler M, Kleiner R, Koelle D, Grundler D, Poggio M. Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry. Phys. Rev. Lett. 111:067202, 2013. Google Scholar

[121]

Buchter A, Wölbing R, Wyss M, Kieler OF, Weimann T, Kohlmann J, Zorin AB, Rüffer D, Matteini F, Tütüncüoglu G, Heimbach F, Kleibert A, Fontcuberta i Morral A, Grundler D, Kleiner R, Koelle D, Poggio M. Magnetization reversal of an individual exchange-biased permalloy nanotube. Phys. Rev. B 92:214432, 2015. Google Scholar

[122]

Kirtley JR. Prospects for imaging magnetic nanoparticles using a scanning SQUID microscope. Supercond. Sci. Technol. 22:064008, 2009. Google Scholar

[123]

Bellido E, Domingo N, Ojea-Jiménez I, Ruiz-Molina D. Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8:1465–1491, 2012. PubMedCrossrefGoogle Scholar

[124]

Cornia A, Fabretti AC, Pacchioni M, Zobbi L, Bonacchi D, Caneschi A, Gatteschi D, Biagi R, Del Pennino U, De Renzi V, Gurevich L, Van der Zant HSJ. Direct observation of single-molecule magnets organized on gold surfaces. Angew. Chem. Int. Ed. 42:1645–1648, 2003. CrossrefGoogle Scholar

[125]

Coronado E, Forment-Aliaga A, Romero FM, Corradini V, Biagi R, Renzi V, Gambardella A, del Pennino U. Isolated Mn_{12} single-molecule magnets grafted on gold surfaces via electrostatic interactions. Inorg. Chem. 44:7693–7695, 2005. CrossrefGoogle Scholar

[126]

Lam SKH, Yang W, Wiogo HTR, Foley CP. Attachment of magnetic molecules on a nanoSQUID. Nanotechnology 19:285303, 2008. Google Scholar

[127]

Wernsdorfer W, Bonet Orozco E, Hasselbach K, Benoit A, Mailly D, Kubo O, Nakano H, Barbara B. Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79:4014–4017, 1997. CrossrefGoogle Scholar

[128]

Thirion C, Wernsdorfer W, Mailly D. Switching of magnetization by nonlinear resonance studied in single nanoparticles. Nature Mater. 2:524–527, 2003. CrossrefGoogle Scholar

[129]

Le Roy D, Morel R, Pouget S, Brenac A, Notin L, Crozes T, Wernsdorfer W. Bistable coupling states measured on single Co nanoclusters deposited on CoO(111). Phys. Rev. Lett. 107:057204, 2011. Google Scholar

[130]

Wernsdorfer W. Magnétométrie í micro-SQUID pour l‘étude de particules ferromagnétiques isolées aux échelles. PhD thesis, Joseph Fourier University, Grenoble, 1996.Google Scholar

[131]

Wernsdorfer W, Sessoli R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284:133–135, 1999. CrossrefPubMedGoogle Scholar

[132]

Reim W, Koch RH, Malozemoff AP, Ketchen MB, Maletta H. Magnetic equilibrium noise in spin-glasses: Eu_{0.4}Sr_{0.6}S. Phys. Rev. Lett. 57:905–908, 1986. CrossrefPubMedGoogle Scholar

[133]

Awschalom DD, Smyth JF, Grinstein G, DiVincenzo DP, Loss D. Macroscopic quantum tunneling in magnetic proteins. Phys. Rev. Lett. 68:3092–3095, 1992. CrossrefPubMedGoogle Scholar

[134]

Awschalom DD, DiVincenzo DP, Smyth JF. Macroscopic quantum effects in nanometer-scale magnets. Science 258:414–421, 1992. PubMedCrossrefGoogle Scholar

[135]

Luis F, Repollés A, Martínez-Pérez MJ, Aguilà D, Roubeau O, Zueco D, Alonso PJ, Evangelisti M, Camón A, Sesé J, Barrios LA, Aromí G. Molecular prototypes for spin-based CNOT and SWAP quantum gates. Phys. Rev. Lett. 107:117203, 2011. Google Scholar

[136]

Martínez-Pérez MJ, Cardona-Serra S, Schlegel C, Moro F, Alonso PJ, Prima-García H, Clemente-Juan JM, Evangelisti M, Gaita-Ariño A, Sesé J, van Slageren J, Coronado E, Luis F. Gd-based single-ion magnets with tunable magnetic anisotropy: Molecular design of spin qubits. Phys. Rev. Lett. 108:247213, 2012. Google Scholar

[137]

Martínez-Pérez MJ, Montero O, Evangelisti M, Luis F, Sesé J, Cardona-Serra S, Coronado E. Fragmenting gadolinium: Mononuclear polyoxometalate-based magnetic coolers for ultra-low temperatures. Adv. Mater. 24:4301–4305, 2012. PubMedCrossrefGoogle Scholar

[138]

Cervetti C, Rettori A, Gloria Pini M, Cornia A, Repollés A, Luis F, Dressel M, Rauschenbach S, Kern K, Burghard M, Bogani L. The classical and quantum dynamics of molecular spins on graphene. Nat. Mater. 15:164–168, 2016. CrossrefPubMedGoogle Scholar

[139]

Kirtley JR. SQUID microscopy for fundamental studies. Physica C 368:55–65, 2002. CrossrefGoogle Scholar

[140]

Kirtley JR, Ketchen MB, Staviasz KG, Sun JZ, Gallagher WJ, Blanton SH, Wind SJ. High-resolution scanning SQUID microscope. Appl. Phys. Lett. 66:1138–1140, 1995. CrossrefGoogle Scholar

[141]

Ketchen MB, Kirtley JR. Design and performance aspects of pickup loop structures for miniature SQUID magnetometry. IEEE Trans. Appl. Supercond. 5:2133–2136, 1995. CrossrefGoogle Scholar

[142]

Ketchen MB, Kirtley JR, Bhushan M. Miniature vector magnetometer for scanning SQUID microscopy. IEEE Trans. Appl. Supercond. 7:3139–3142, 1997. CrossrefGoogle Scholar

[143]

Kirtley JR, Tsuei CC, Moler KA, Kogan VG, Clem JR, Turberfield AJ. Variable sample temperature scanning superconducting quantum interference device microscope. Appl. Phys. Lett. 74:4011–4013, 1999. CrossrefGoogle Scholar

[144]

Mannhart J, Hilgenkamp H, Mayer B, Gerber Ch, Kirtley JR, Moler KA, Sigrist M. Generation of magnetic flux by single grain boundaries of YBa_{2}Cu_{3}O_{7-x}. Phys. Rev. Lett. 77:2782, 1996. Google Scholar

[145]

Tsuei CC, Kirtley JR, Chi CC, Lock See Yu-Jahnes, Gupta A, Shaw T, Sun JZ, Ketchen MB. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa_{2}Cu_{3}O_{7-δ}. Phys. Rev. Lett. 73:593–596, 1994. CrossrefGoogle Scholar

[146]

Hilgenkamp H, Ariando, Smilde H-JH, Blank DHA, Rijnders Rogalla G, Kirtley H, JR, Tsuei CC. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422:50–53, 2003. CrossrefPubMedGoogle Scholar

[147]

Koshnick NC, Huber ME, Bert JA, Hicks CW, Large J, Edwards H, Moler KA. A terraced scanning supper conducting quantum interference device susceptometer with submicron pickup loops. Appl. Phys. Lett. 93:243101, 2008. Google Scholar

[148]

Björnsson PG, Gardner BW, Kirtley JR, Moler KA. Scanning superconducting quantum interference device microscope in a dilution refrigerator. Rev. Sci. Instr. 72:4153–4158, 2001. CrossrefGoogle Scholar

[149]

Nowack KC, Spanton EM, Baenninger M, König M, Kirtley JR, Kalisky B, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp LW, Goldhaber-Gordon D, Moler KA. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nature Materials 12:787–791, 2013. PubMedCrossrefGoogle Scholar

[150]

Bert JA, Kalisky B, Bell C, Kim M, Hikita Y, Hwang HY, Moler KA. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO_{3}/SrTiO_{3} interface. Nature Physics 7:767–771, 2011. CrossrefGoogle Scholar

[151]

Kalisky B, Spanton EM, Noad H, Kirtley JR, Nowack KC, Bell C, Sato HK, Hosoda M, Xie Y, Hikita Y, Woltmann C, Pfanzelt G, Jany R, Richter C, Hwang HY, Mannhart J, Moler KA. Locally enhanced conductivity due to the tetragonal domain structure in LaAlO_{3}/SrTiO_{3} heterointerfaces. Nature Mater. 12:1091–1095, 2013. CrossrefGoogle Scholar

[152]

Hykel DJ, Wang ZS, Castellazzi P, Crozes T, Shaw G, Schuster K, Hasselbach K. MicroSQUID force microscopy in a dilution refrigerator. J. Low. Temp. Phys. 175:861–867, 2014. CrossrefGoogle Scholar

[153]

Veauvy C, Hasselbach K, Mailly D. Micro-SQUID microscopy of vortices in a perforated superconducting Al film. Phys. Rev. B 70:214513, 2004. Google Scholar

[154]

Paulsen C, Hykel DJ, Hasselbach K, Aoki D. Observation of the Meissner-Ochsenfeld effect and the absence of the Meissner state in UCoGe. Phys. Rev. Lett. 109:237001, 2012. Google Scholar

[155]

Anahory Y, Reiner J, Embon L, Halbertal D, Yakovenko A, Myasoedov Y, Rappaport ML, Huber ME, Zeldov E. Three-junction SQUID-on-tip with tunable in-plane and out-of-plane magnetic field sensitivity. Nano Letters 14:6481–6487, 2014. CrossrefPubMedGoogle Scholar

[156]

Finkler A, Vasyukov D, Segev Y, Ne’eman L, Lachman EO, Rappaport ML, Myasoedov Y, Zeldov E, Huber ME. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Rev. Sci. Instr. 83:073702, 2012. Google Scholar

[157]

Embon L, Anahory Y, Suhov A, Halbertal D, Cuppens J, Yakovenko A, Uri A, Myasoedov Y, Rappaport ML, Huber ME, Gurevich A, Zeldov E. Probing dynamics and pinning of single vortices in superconductors at nanometer scales. Scientific Reports 5:7598, 2015. Google Scholar

[158]

Anahory Y, Embon L, Li CJ, Banerjee S, Meltzer A, Naren HR, Yakovenko A, Cuppens J, Myasoedov Y, Rappaport ML, Huber ME, Michaeli K, Venkatesan T, Ariando, Zeldov E. Emergent nanoscale superparamagnetism at oxide interfaces. Nature Commun. 7:12566, 2016. Google Scholar

[159]

Lachman EO, Young AF, Richardella A, Cuppens J, Naren HR, Anahory Y, Meltzer AY, Kandala A, Kempinger S, Myasoedov Y, Huber ME, Samarth N, Zeldov E. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. 1:e1500740, 2015. PubMedCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.