Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Developments in platinum anticancer drugs

Bartosz Tylkowski
  • Corresponding author
  • Universitat Rovira i Virgili, Departament de Enginyeria Química, Av. Països Catalans 26 43007, Tarragona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renata Jastrząb / Akira Odani
  • Kanazawa University, Department of Clinical and Analytical Sciences, Kakuma-machi, 920-1192, Kanazawa, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-21 | DOI: https://doi.org/10.1515/psr-2016-0007


Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

Keywords: platinum; cancer; cisplatin; drug delivery


  • [1]

    Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in escherichia coli by electrolysis products from a platinum electrode. Nature 1965;205(4972):698–9.PubMedCrossrefGoogle Scholar

  • [2]

    McDonald D, Hunt LB. A History of platinum and its allied metals. Johnson Matthey, 1982.Google Scholar

  • [3]

    Johnstone TC, Wilson JJ, Lippard SJ. Monofunctional and higher-valent platinum anticancer agents. Inorganic Chemistry 2013;52(21):12234–49.Web of ScienceCrossrefPubMedGoogle Scholar

  • [4]

    Siddik ZH. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22(47):7265–79.CrossrefPubMedGoogle Scholar

  • [5]

    Johnstone TC, Park GY, Lippard SJ. Understanding and improving platinum anticancer drugs –phenanthriplatin. Anticancer Research 2014;34(1):471–6.PubMedGoogle Scholar

  • [6]

    Odani A, et al. Platinum DNA intercalator-mononucleotide adduct formation. Cooperativity between aromatic ring stacking and electrostatic interactions. Inorganic Chemistry 1991;30(9):2133–8.CrossrefGoogle Scholar

  • [7]

    de Mier-Vinué J, et al. Synthesis, biophysical studies, and antiproliferative activity of platinum(II) complexes having 1,2-Bis(aminomethyl)carbobicyclic ligands. Journal of Medicinal Chemistry 2008;51(3):424–31.Web of ScienceCrossrefPubMedGoogle Scholar

  • [8]

    Gümüş F, et al. Synthesis, cytotoxicity, and DNA interactions of new cisplatin analogues containing substituted benzimidazole ligands. Journal of Medicinal Chemistry 2009;52(5):1345–57.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [9]

    Wilson JJ, Lippard SJ. In vitro anticancer activity of cis-diammineplatinum(II) complexes with β-diketonate leaving group ligands. Journal of Medicinal Chemistry 2012;55(11):5326–36.Web of SciencePubMedCrossrefGoogle Scholar

  • [10]

    Bischoff H, et al. Efficacy of β-diketonato complexes of titanium, zirconium, and hafnium against chemically induced autochthonous colonic tumors in rats. Journal of Cancer Research and Clinical Oncology 1987;113(5):446–50.CrossrefPubMedGoogle Scholar

  • [11]

    Wu A, et al. Ruthenium(II) acetylacetonato–sulfoxide complexes. Inorganic Chemistry Communications 2003;6(8):996–1000.CrossrefGoogle Scholar

  • [12]

    Melchart M, et al. Chlorido-, aqua-, 9-ethylguanine- and 9-ethyladenine-adducts of cytotoxic ruthenium arene complexes containing O,O-chelating ligands. Journal of Inorganic Biochemistry 2007;101(11–12):1903–12.Web of ScienceCrossrefPubMedGoogle Scholar

  • [13]

    Muscella A, et al. Antitumor activity of [lsqb]Pt(O,O/’-acac)([gamma]-acac)(DMS)[rsqb] in mouse xenograft model of breast cancer. Cell Death Dis 2014;5:e1014.CrossrefGoogle Scholar

  • [14]

    Lord RM, et al. Mechanistic and cytotoxicity studies of group IV β-Diketonate complexes. ChemMedChem 2014;9(6):1136–9.Web of SciencePubMedCrossrefGoogle Scholar

  • [15]

    Kidani Y, et al. Orally active DACH-Pt (IV) compounds, in platinum and other metal coordination compounds in cancer chemotherapy 2. In:Pinedo HM, Schornagel JH, eds. Springer US; 1996;43–51.Google Scholar

  • [16]

    Braddock PD, et al. Structure and activity relationships of platinum complexes with anti-tumour activity. Chemico-Biological Interactions 1975;11(3):145–61.PubMedCrossrefGoogle Scholar

  • [17]

    Bramwell VHC, et al. Activity of JM9 in advanced ovarian cancer: A phase I-II trial. Cancer Treatment Reports 1985;69(4):409–16.PubMedGoogle Scholar

  • [18]

    Gordon M, Hollander S. Review of platinum anticancer compounds. Journal of Medicine 1993;24(4–5):209–65.PubMedGoogle Scholar

  • [19]

    McKeage MJ, et al. Phase I and pharmacokinetic study of an oral platinum complex given daily for 5 days in patients with cancer. Journal of Clinical Oncology 1997;15(7):2691–700.CrossrefGoogle Scholar

  • [20]

    Talman EG, et al. Can Pt(IV)-amine complexes act as ‘prodrugs’? Inorganica Chimica Acta, 1998;283(1):251–5.CrossrefGoogle Scholar

  • [21]

    Siepmann J, et al. A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets. J Pharm Sci 1999;88(1):65–72.PubMedCrossrefGoogle Scholar

  • [22]

    Johnson NB. Geomancy, sacred geometry, and the idea of a garden: Tenryu-ji temple, Kyoto, Japan. Journal of Garden History 1989;9(Jan–Mar 89):1–19.CrossrefGoogle Scholar

  • [23]

    Hambley TW, et al. Modifying the properties of platinum (IV) complexes in order to increase biological effectiveness. J Inorg Biochem 1999;77(1–2):3–12.PubMedCrossrefGoogle Scholar

  • [24]

    Ellis L, Er H, Hambley T. The Influence of the axial ligands of a series of platinum(IV) anti-cancer complexes on their reduction to platinum(II) and reaction with DNA. Australian Journal of Chemistry 1995;48(4):793–806.CrossrefGoogle Scholar

  • [25]

    Choi S, et al. Reduction and anticancer activity of platinum(IV) complexes. Inorganic Chemistry 1998;37(10):2500–4.CrossrefGoogle Scholar

  • [26]

    Farrer NJ, et al. Photocytotoxic trans-diam(m)ine platinum(IV) diazido complexes more potent than their cis isomers. Chemical Research in Toxicology 2010;23(2):413–21.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [27]

    McCoy CP, et al. Light-triggered molecule-scale drug dosing devices. Journal of the American Chemical Society 2007;129(31):9572–3.Web of ScienceCrossrefPubMedGoogle Scholar

  • [28]

    Farrer NJ, Sadler PJ. Photochemotherapy: Targeted activation of metal anticancer complexes. Australian Journal of Chemistry 2008;61(9):669–74.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004;5(8):497–508.PubMedCrossrefGoogle Scholar

  • [30]

    Ibbotson SH, et al. Photodynamic therapy in dermatology: Dundee clinical and research experience. Photodiagnosis and Photodynamic Therapy 2004;1(3):211–23.CrossrefPubMedGoogle Scholar

  • [31]

    Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2(1): 38–47.PubMedCrossrefGoogle Scholar

  • [32]

    Bednarski PJ, Mackay FS, Sadler PJ. Photoactivatable platinum complexes. Anticancer Agents Med Chem 2007;7(1):75–93.PubMedCrossrefGoogle Scholar

  • [33]

    Mackay FS, et al. A potent cytotoxic photoactivated platinum complex. Proc Natl Acad Sci U S A 2007;104(52):20743–8.CrossrefGoogle Scholar

  • [34]

    Hall MD, et al. Basis for design and development of platinum(IV) anticancer complexes. J Med Chem 2007;50(15):3403–11.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [35]

    Kumar A, Zhang X, Liang XJ. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol Adv 2013;31(5):593–606.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [36]

    Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010;188(6):759–68.Web of ScienceCrossrefPubMedGoogle Scholar

  • [37]

    Kratz F, et al. Prodrug strategies in anticancer chemotherapy. ChemMedChem 2008;3(1):20–53.Web of ScienceCrossrefPubMedGoogle Scholar

  • [38]

    Littlefield SL, et al. Synthesis, characterization and stat3 inhibitory properties of the prototypical platinum(IV) anticancer drug, [PtCl3(NO2)(NH3)2] (CPA-7). Inorganic Chemistry 2008;47(7):2798–804.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [39]

    Kumar A, et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 2012;33(4):1180–9.Web of ScienceCrossrefPubMedGoogle Scholar

  • [40]

    Dreaden EC, et al. Beating cancer in multiple ways using nanogold. Chem Soc Rev 2011;40(7):3391–404.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [41]

    Turkevich J. Colloidal gold. Part I. Gold Bulletin 1985;18(3):86–91.CrossrefGoogle Scholar

  • [42]

    Grabar KC, et al. Nanoscale characterization of gold colloid monolayers: A comparison of four techniques. Analytical Chemistry 1997;69(3):471–7.CrossrefPubMedGoogle Scholar

  • [43]

    Jana NR, Gearheart L, Murphy CJ. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of Materials 2001;13(7):2313–22.CrossrefGoogle Scholar

  • [44]

    Meltzer S, et al. Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates. Langmuir 2001;17(5):1713–18.CrossrefGoogle Scholar

  • [45]

    Sau T, et al. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. Journal of Nanoparticle Research 2001;3(4):257–61.CrossrefGoogle Scholar

  • [46]

    Kumar A, et al. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum (IV) drug for prostate cancer treatment. ACS Nano 2014;8(5):4205–220.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [47]

    Dai Y, et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. Journal of the American Chemical Society 2013;135(50):18920–9.PubMedCrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2016-03-21

Published in Print: 2018-01-26

Citation Information: Physical Sciences Reviews, Volume 3, Issue 1, 20160007, ISSN (Online) 2365-659X, ISSN (Print) 2365-6581, DOI: https://doi.org/10.1515/psr-2016-0007.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in