Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

A 12-bit 1-MS/s 26-μW SAR ADC for Sensor Applications

Yung-Hui Chung
  • Corresponding author
  • Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da’an Dist., Taipei City 10607, Taiwan, R.O.C
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chia-Wei Yen
  • Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da’an Dist., Taipei City 10607, Taiwan, R.O.C
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cheng-Hsun Tsai
  • Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Rd., Da’an Dist., Taipei City 10607, Taiwan, R.O.C
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-30 | DOI: https://doi.org/10.1515/psr-2016-0014

Abstract

This chapter presents an energy-efficient 12-bit 1-MS/s successive approximation register analog-to-digital converter (ADC) for sensor applications. A programmable dynamic comparator is proposed to suppress static current and maintain good linearity. A hybrid charge redistribution digital-to-analog converter is proposed to decrease the total capacitance, which would reduce the power consumption of the input and reference buffers. In the proposed ADC, its total input capacitance is only 700 fF, which greatly reduces the total power consumption of the analog frontend circuits. The 12-bit ADC is fabricated using 0.18-μm complementary metal-oxidesemiconductor technology, and it consumes only 26 μW from a 1 V supply at 1-MS/s. The measured signal-to-noise-and-distortion ratio (SNDR) and spurious-free dynamic range (SFDR) are 60.1 and 72.6 dB, respectively. The measured effective number of bits (ENOB) for a 100 kHz input frequency is 9.7 bits. At the Nyquist input frequency, the measured SNDR and SFDR are 59.7 and 71 dB, respectively. The ENOB is maintained at 9.6 bits and the figure-of-merit is 33.5 fJ/conversion-step.

Keywords: Analog-to-digital converter (ADC); dynamic comparator; successive approximation register (SAR); hybrid-SAR; sensor applications

References

  • [1]

    M. D. Scott, B. E. Boser, and K. S. J. Pister, An Ultralow-Energy ADC for Smart Dust, IEEE Journal of Solid-State Circuits, 38 (2003) 1123–1129.CrossrefGoogle Scholar

  • [2]

    A. O’Driscoll, K. V. Shenoy, and T. H. Meng, Adaptive Resolution ADC Array for an Implantable Neural Sensor, IEEE Trans on Biomedical Circuits and Systems, 5 (2011), 120–130.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    Y.-K. Chang, C.-S. Wang, and C.-K. Wang, A 8-bit 500-KS/s Low Power SAR ADC for BioMedical Application, IEEE Asian Solid-State Circuits Conference (A-SSCC) (2008), pp. 228–231.Google Scholar

  • [4]

    R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, A 200μW Eight-Channel Acquisition ASIC for Ambulatory EEG Systems, IEEE International Solid-State Circuits Conference (ISSCC) (2008), pp. 164–165.Google Scholar

  • [5]

    N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. Chandrakasan, A Micro-Power EEG Acquisition SoC with Integrated Feature Extraction Processor for a Chronic Seizure Detection System, IEEE Journal of Solid-State Circuits, 45 (2010) 804–816.Web of ScienceCrossrefGoogle Scholar

  • [6]

    N. Verma and A. P. Chandrakasan, An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes, IEEE Journal of Solid-State Circuits, 42 (2007) 1196–1205.Web of ScienceCrossrefGoogle Scholar

  • [7]

    X. Zou, X. Xu, L. Yao, and Y. Lian, A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip, IEEE Journal of Solid-State Circuits, 44 (2009) 1067–1077.CrossrefWeb of ScienceGoogle Scholar

  • [8]

    G. Promitzer, 12-bit Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1 MS/s, IEEE Journal of Solid-State Circuits, 36 (2001) 1138–1143.CrossrefGoogle Scholar

  • [9]

    M.-H. Wu, Y.-H. Chung, and H.-S. Li, A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique, IEEE Asian Solid-State Circuits Conference (A-SSCC) (2012), pp. 157–160.Google Scholar

  • [10]

    Y.-H. Chung, M.-H. Wu, and H.-S. Li, A 24μW 12b 1MS/s 68.3dB SNDR SAR ADC with Two-Step Decision DAC Switching, IEEE Custom Integrated Circuits Conference (CICC) (2013), pp. 1–4.Google Scholar

  • [11]

    C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS Process, IEEE Symposium on VLSI Circuits, Digest of technical papers (2009), pp. 237–238.Google Scholar

  • [12]

    S.-W. M. Chen and R. W. Brodersen, A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS, IEEE Journal of Solid-State Circuits, 41 (2006) 2669–2680.CrossrefGoogle Scholar

  • [13]

    C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, et al., A 10b 100MS/s 1.13mW SAR ADC with Binary Scaled Error Compensation, IEEE International Solid-State Circuits Conference (ISSCC) (2010), pp. 368–369.Google Scholar

  • [14]

    P. Harpe, E. Cantatore, and A. Van Roermund, A 10b/12b 40 kS/s SAR ADC with Data-Driven Noise Reduction Achieving up to 10.01 ENOB at 2.2 fJ/Conversion-Step, IEEE Journal of Solid-State Circuits, 48 (2013) 3011–3018.Web of ScienceCrossrefGoogle Scholar

  • [15]

    A. Agnes, E. Bonizzoni, P. Malcovati, and F. Maloberti, A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator, IEEE International Solid-State Circuits Conference (ISSCC) (2008), pp. 246–247.10.1016/j.humimm.2014.09.009.Google Scholar

  • [16]

    M. Yoshioka, K. Ishikawa, and T. Takayama, A 10b 50MS/s 820μW SAR ADC with On-Chip Digital Calibration, IEEE International Solid-State Circuits Conference (ISSCC) (2010), pp. 384–385.Google Scholar

  • [17]

    J Jin., Y. Gao, and E. Sanchez-Sinencio, An Energy-Efficient Time-Domain Asynchronous 2 b/ Step SAR ADC with a Hybrid R-2R/C-3C DAC Structure, IEEE Journal of Solid-State Circuits, 49 (2014) 1383–1396.Web of ScienceCrossrefGoogle Scholar

  • [18]

    B. Fotouhi and D. A. Hodges, High-Resolution A/D Conversion in MOS/LSI, IEEE Journal of Solid-State Circuits, SC-14 (1979) 920–926.Google Scholar

  • [19]

    H.-S. Lee, D. A. Hodges, and P. R. Gray, A Self-Calibrating 15 Bit CMOS A/D Converter, IEEE Journal of Solid-State Circuits, SC-19 (1984) 813–819.Google Scholar

  • [20]

    M. Trakimas and S. R. Sonkusale, An Adaptive Resolution Asynchronous ADC Architecture for Data Compression in Energy Constrained Sensing Applications, IEEE Trans on Circuits and Systems I, 58 (2011) 921–934.Web of ScienceCrossrefGoogle Scholar

  • [21]

    S. Kundu, J. H. Lu, E. Alpman, H. Lakdawala, J. Paramesh, B. Jung, et al., A 1.2 V 2.64 GS/s 8 bit 39 mW Skew-Tolerant Time-interleaved SAR ADC in 40 nm Digital LP CMOS for 60 GHz WLAN, IEEE Custom Integrated Circuits Conference (CICC) (2014), pp. 1–4.Google Scholar

  • [22]

    X. Y. Tong, Z. M. Zhu, Y. T. Yang, and L. X. Liu, D/A Conversion Networks for High-Resolution SAR A/D Converters, Electronics Letters, 47 (2011) 169–171.Web of ScienceCrossrefGoogle Scholar

  • [23]

    B. D. Smith, Coding by Feedback Methods, Proceeding of the IRE (1953), pp. 1053–1058.Google Scholar

  • [24]

    P. Harpe, C. Zhou, Y. Bi, N. P. Van der Meijs, X. Wang, K. Philips, et al., A 26μW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios, IEEE Journal of Solid-State Circuits, 46 (2011) 1585–1595.CrossrefWeb of ScienceGoogle Scholar

  • [25]

    M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs, IEEE Asian Solid-State Circuits Conference (A-SSCC) (2008), pp. 269–272.Google Scholar

  • [26]

    M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, Matching Properties of MOS Transistors, IEEE Journal of Solid-State Circuits, 24 (1989) 1433–1440.CrossrefGoogle Scholar

  • [27]

    M. Dessouky and A. Kaiser, Very Low-Voltage Digital-Audio ΣΔ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping, IEEE Journal of Solid-State Circuits, 36 (2001) 349–355.CrossrefGoogle Scholar

  • [28]

    R. H. Walden, Analog-to-Digital Converter Survey and Analysis, IEEE Journal on Selected Areas in Communications, 17 (1999) 539–550.CrossrefGoogle Scholar

About the article

Published Online: 2016-04-30

Published in Print: 2018-01-26


Citation Information: Physical Sciences Reviews, Volume 3, Issue 1, 20160014, ISSN (Online) 2365-659X, ISSN (Print) 2365-6581, DOI: https://doi.org/10.1515/psr-2016-0014.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in