[1]
Choudhury, B, Schmugge TJ, Chang A, Newton RW. Effect of surface roughness on the microwave emission from soils. J Geophys Res: Oceans 1979;84(C9):5699–706.CrossrefGoogle Scholar
[2]
Fuller K, Tabor D. The effect of surface roughness on the adhesion of elastic solids. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1975.Google Scholar
[3]
Gersten JI. The effect of surface roughness on surface enhanced Raman scattering. J Chem Phys 1980;72(10):5779–80.CrossrefGoogle Scholar
[4]
Gong Y. Investigation of glass aqueous corrosion using surface characterization tools. New York State College of Ceramics at Alfred University. New York: Kazuo Inamori School of Engineering, 2016.Google Scholar
[5]
Lincks, J, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19(23):2219–32.PubMedCrossrefGoogle Scholar
[6]
Zhao, YP, et al. Surface-roughness effect on capacitance and leakage current of an insulating film. Phys Rev B 1999;60(12):9157.CrossrefGoogle Scholar
[7]
Fang, S, et al. Analyzing atomic force microscopy images using spectral methods. J Appl Phys 1997;82(12):5891–98.CrossrefGoogle Scholar
[8]
Shul, R, et al. Inductively coupled plasma etching of GaN. Appl Phys Lett 1996;69(8):1119–21.CrossrefGoogle Scholar
[9]
Petri, R, et al. Silicon roughness induced by plasma etching. J Appl Phys 1994;75(11):7498–506.CrossrefGoogle Scholar
[10]
Levy PM, Zhang S, Fert A. Electrical conductivity of magnetic multilayered structures. Phys Rev Lett 1990;65(13):1643.PubMedCrossrefGoogle Scholar
[11]
Santamore D, Cross M. Effect of surface roughness on the universal thermal conductance. Phys Rev B 2001;63(18):184306.CrossrefGoogle Scholar
[12]
Nika, D, et al. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B 2009;79(15):155413.CrossrefGoogle Scholar
[13]
Aspnes DE. Optical properties of thin films. Thin Solid Films 1982;89(3):249–62.CrossrefGoogle Scholar
[14]
Toigo, F, et al. Optical properties of rough surfaces: general theory and the small roughness limit. Phys Rev B 1977;15(12):5618.CrossrefGoogle Scholar
[15]
Gong Y, Wren AW, Mellott NP. Quantitative morphological and compositional evaluation of laboratory prepared aluminoborosilicate glass surfaces. Appl Surf Sci 2015;324:594–604.CrossrefGoogle Scholar
[16]
Gong, Y, et al. Surface roughness measurements using power spectrum density analysis with enhanced spatial correlation length. J Phys Chem C 2016;120(39):22358–64.CrossrefGoogle Scholar
[17]
Raoufi D. Fractal analyses of ITO thin films: a study based on power spectral density. Physica B 2010;405(1):451–55.CrossrefGoogle Scholar
[18]
Kimura M, Mitsuhashi J, Koyama H. Si/SiO2 interface states and neutral oxide traps induced by surface microroughness. J Appl Phys 1995;77(4):1569–75.CrossrefGoogle Scholar
[19]
Depas, M, et al. Critical processes for ultrathin gate oxide integrity. Electrochem Soc 1996;PV-96-1:352.Google Scholar
[20]
Frugier, P, et al. SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL model. J Nucl Mater 2008;380(1):8–21.CrossrefGoogle Scholar
[21]
Vienna, JD, et al. Current understanding and remaining challenges in modeling long‐term degradation of borosilicate nuclear waste glasses. Int J Appl Glass Sci 2013;4(4):283–94.CrossrefGoogle Scholar
[22]
Hellmann, R, et al. Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. Nat Mater 2015;14(3):307.CrossrefPubMedGoogle Scholar
[23]
Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56(9):930.PubMedCrossrefGoogle Scholar
[24]
Dixson, R, et al. Measurement of a CD and sidewall angle artifact with two-dimensional CD AFM metrology. In: Proc SPIE, 1996.Google Scholar
[25]
Nagase, M, et al. Metrology of atomic force microscopy for Si nano-structures. Jpn J Appl Phys 1995;34(6S):3382.CrossrefGoogle Scholar
[26]
Novak, P, et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 2009;6(4):279–81.CrossrefPubMedGoogle Scholar
[27]
Afrin R, Yamada T, Ikai A. Analysis of force curves obtained on the live cell membrane using chemically modified AFM probes. Ultramicroscopy 2004;100(3):187–95.CrossrefPubMedGoogle Scholar
[28]
Dulub O, Boatner LA, Diebold U. STM study of the geometric and electronic structure of ZnO (0001)-Zn,(0001)-O,(1010), and (1120) surfaces. Surf Sci 2002;519(3):201–17.CrossrefGoogle Scholar
[29]
Wildoer, JW, et al. Electronic structure of atomically resolved carbon nanotubes. Nature 1998;391(6662):59.CrossrefGoogle Scholar
[30]
Rugar D, Hansma P. Atomic force microscopy. Phys Today 1990;43(10):23–30.CrossrefGoogle Scholar
[31]
Eaton P, West P. Atomic force microscopy. New York: Oxford University Press, 2010.Google Scholar
[32]
Shi S, Guo D, Luo J. Enhanced phase and amplitude image contrasts of polymers in bimodal atomic force microscopy. RSC Adv 2017;7(19):11768–76.CrossrefGoogle Scholar
[33]
Albers, BJ, et al. Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nanotechnol 2009;4(5):307–10.CrossrefPubMedGoogle Scholar
[34]
Palacio ML, Bhushan B. Normal and lateral force calibration techniques for AFM cantilevers. Crit Rev Solid State Mater Sci 2010;35(2):73–104.CrossrefGoogle Scholar
[35]
Sears J. AFM Artifacts. 2015, Available at: https://blog.cian-erc.org/2015/01/02/afm-artifacts/.
[36]
Kang, M, et al. Confocal laser scanning microscopy measurement of the morphology of vanadium pentoxide nanorods grown by electron beam irradiation or thermal oxidation. J Nanophotonics 2013;7(1):073797.CrossrefGoogle Scholar
[37]
Balaji J, Maiti S. Quantitative measurement of the resolution and sensitivity of confocal microscopes using line‐scanning fluorescence correlation spectroscopy. Microsc Res Tech 2005;66(4):198–202.CrossrefPubMedGoogle Scholar
[38]
Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990;248(4951):73–76.CrossrefPubMedGoogle Scholar
[39]
Kim SW, Kim GH. Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry. Appl Opt 1999;38(28):5968–73.CrossrefPubMedGoogle Scholar
[40]
Raymond CJ. Scatterometry for semiconductor metrology. New York: Marcel Dekker, Inc., 2001:477–514.Google Scholar
[41]
Shen Y, Zhu Q, Zhang Z. A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Rev Sci Instrum 2003;74(11):4885–92.CrossrefGoogle Scholar
[42]
Wasserman, SR, et al. The structure of self-assembled monolayers of alkylsiloxanes on silicon: a comparison of results from ellipsometry and low-angle x-ray reflectivity. J Am Chem Soc 1989;111(15):5852–61.CrossrefGoogle Scholar
[43]
Thoma, M, et al. Ellipsometry and X-ray reflectivity studies on monolayers of phosphatidylethanolamine and phosphatidylcholine in contact with n-dodecane, n-hexadecane, and bicyclohexyl. Langmuir 1996;12(7):1722–28.CrossrefGoogle Scholar
[44]
Braslau, A, et al. Surface roughness of water measured by x-ray reflectivity. Phys Rev Lett 1985;54(2):114.CrossrefGoogle Scholar
[45]
Aspnes D, Theeten J, Hottier F. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys Rev B 1979;20(8):3292.CrossrefGoogle Scholar
[46]
Grutter, AJ, et al. Interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices. Phys Rev Lett 2013;111(8):087202.CrossrefPubMedGoogle Scholar
[47]
Cho, YJ, et al. Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties. Appl Phys Lett 2002;80(7):1249–51.CrossrefGoogle Scholar
[48]
Park, C, et al. XPS and XRR studies on microstructures and interfaces of DLC films deposited by FCVA method. Thin Solid Films 2002;420:235–40.Google Scholar
[49]
Duparre, A, et al. Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. Appl Opt 2002;41(1):154–71.PubMedCrossrefGoogle Scholar
[50]
Ferré-Borrull J, Duparré A, Quesnel E. Procedure to characterize microroughness of optical thin films: application to ion-beam-sputtered vacuum-ultraviolet coatings. Appl Opt 2001;40(13):2190–99.PubMedCrossrefGoogle Scholar
[51]
Senthilkumar, M, et al. Characterization of microroughness parameters in gadolinium oxide thin films: a study based on extended power spectral density analyses. Appl Surf Sci 2005;252(5):1608–19.CrossrefGoogle Scholar
[52]
Khamesee, MB, et al. Nanofractal analysis of material surfaces using atomic force microscopy. Mater Trans 2004;45(2):469–78.CrossrefGoogle Scholar
[53]
Mandelbrot BB, Pignoni R. The fractal geometry of nature, vol. 173. New York: WH freeman, 1983.Google Scholar
[54]
Russ JC. Fractal surfaces. New York: Springer Science & Business Media, 2013.Google Scholar
[55]
Dumas, P, et al. Quantitative microroughness analysis down to the nanometer scale. EPL (Europhysics Letters) 1993;22(9):717.CrossrefGoogle Scholar
[56]
Church EL, Takacs PZ. Effects of the optical transfer function in surface profile measurements. In: Proc SPIE, 1989.Google Scholar
[57]
Gibaud A, Hazra S. X-ray reflectivity and diffuse scattering. Curr Sci 2000; 78(12): 1467–77.Google Scholar
[58]
Newton RG. Scattering theory of waves and particles. New York: Springer Science & Business Media, 2013.Google Scholar
[59]
Pershan PS, Als-Nielsen J. X-ray reflectivity from the surface of a liquid crystal: surface structure and absolute value of critical fluctuations. Phys Rev Lett 1984;52(9):759.CrossrefGoogle Scholar
[60]
Schwab, AD, Agra DMG, Kim JH, Kumar S, & Dhinojwala A. Surface dynamics in rubbed polymer thin films probed with optical birefringence measurements. Macromolecules 2000;33(13):4903–09.CrossrefGoogle Scholar
[61]
Briscoe, WH, Agra DMG, Kim JH, Kumar S, & Dhinojwala A. Applying grazing incidence X-ray reflectometry (XRR) to characterising nanofilms on mica. J Colloid Interface Sci 2007;306(2):459–63.CrossrefPubMedGoogle Scholar
[62]
Wen, M, Agra DMG, Kim JH, Kumar S, & Dhinojwala A. Modulation periodicity dependent structure, stress, and hardness in NbN/W2N nanostructured multilayer films. J Appl Phys 2011;109(12):123525.CrossrefGoogle Scholar
[63]
Frost F, Schindler A, Bigl F. Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws. Phys Rev Lett 2000;85(19):4116.CrossrefPubMedGoogle Scholar
Comments (0)