Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Surface roughness: A review of its measurement at micro-/nano-scale

Yuxuan Gong / Jian Xu
  • School of Physics and Electronic Information, Henan Polytechnic University, Jiaozuo 454000, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Relva C. Buchanan
  • Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-09 | DOI: https://doi.org/10.1515/psr-2017-0057

Abstract

The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

Keywords: roughness; roughness measurement; Fractal analysis; profilometry; scatterometry

References

  • [1]

    Choudhury, B, Schmugge TJ, Chang A, Newton RW. Effect of surface roughness on the microwave emission from soils. J Geophys Res: Oceans 1979;84(C9):5699–706.CrossrefGoogle Scholar

  • [2]

    Fuller K, Tabor D. The effect of surface roughness on the adhesion of elastic solids. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1975.Google Scholar

  • [3]

    Gersten JI. The effect of surface roughness on surface enhanced Raman scattering. J Chem Phys 1980;72(10):5779–80.CrossrefGoogle Scholar

  • [4]

    Gong Y. Investigation of glass aqueous corrosion using surface characterization tools. New York State College of Ceramics at Alfred University. New York: Kazuo Inamori School of Engineering, 2016.Google Scholar

  • [5]

    Lincks, J, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19(23):2219–32.PubMedCrossrefGoogle Scholar

  • [6]

    Zhao, YP, et al. Surface-roughness effect on capacitance and leakage current of an insulating film. Phys Rev B 1999;60(12):9157.CrossrefGoogle Scholar

  • [7]

    Fang, S, et al. Analyzing atomic force microscopy images using spectral methods. J Appl Phys 1997;82(12):5891–98.CrossrefGoogle Scholar

  • [8]

    Shul, R, et al. Inductively coupled plasma etching of GaN. Appl Phys Lett 1996;69(8):1119–21.CrossrefGoogle Scholar

  • [9]

    Petri, R, et al. Silicon roughness induced by plasma etching. J Appl Phys 1994;75(11):7498–506.CrossrefGoogle Scholar

  • [10]

    Levy PM, Zhang S, Fert A. Electrical conductivity of magnetic multilayered structures. Phys Rev Lett 1990;65(13):1643.PubMedCrossrefGoogle Scholar

  • [11]

    Santamore D, Cross M. Effect of surface roughness on the universal thermal conductance. Phys Rev B 2001;63(18):184306.CrossrefGoogle Scholar

  • [12]

    Nika, D, et al. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B 2009;79(15):155413.CrossrefGoogle Scholar

  • [13]

    Aspnes DE. Optical properties of thin films. Thin Solid Films 1982;89(3):249–62.CrossrefGoogle Scholar

  • [14]

    Toigo, F, et al. Optical properties of rough surfaces: general theory and the small roughness limit. Phys Rev B 1977;15(12):5618.CrossrefGoogle Scholar

  • [15]

    Gong Y, Wren AW, Mellott NP. Quantitative morphological and compositional evaluation of laboratory prepared aluminoborosilicate glass surfaces. Appl Surf Sci 2015;324:594–604.CrossrefGoogle Scholar

  • [16]

    Gong, Y, et al. Surface roughness measurements using power spectrum density analysis with enhanced spatial correlation length. J Phys Chem C 2016;120(39):22358–64.CrossrefGoogle Scholar

  • [17]

    Raoufi D. Fractal analyses of ITO thin films: a study based on power spectral density. Physica B 2010;405(1):451–55.CrossrefGoogle Scholar

  • [18]

    Kimura M, Mitsuhashi J, Koyama H. Si/SiO2 interface states and neutral oxide traps induced by surface microroughness. J Appl Phys 1995;77(4):1569–75.CrossrefGoogle Scholar

  • [19]

    Depas, M, et al. Critical processes for ultrathin gate oxide integrity. Electrochem Soc 1996;PV-96-1:352.Google Scholar

  • [20]

    Frugier, P, et al. SON68 nuclear glass dissolution kinetics: current state of knowledge and basis of the new GRAAL model. J Nucl Mater 2008;380(1):8–21.CrossrefGoogle Scholar

  • [21]

    Vienna, JD, et al. Current understanding and remaining challenges in modeling long‐term degradation of borosilicate nuclear waste glasses. Int J Appl Glass Sci 2013;4(4):283–94.CrossrefGoogle Scholar

  • [22]

    Hellmann, R, et al. Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. Nat Mater 2015;14(3):307.CrossrefPubMedGoogle Scholar

  • [23]

    Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56(9):930.PubMedCrossrefGoogle Scholar

  • [24]

    Dixson, R, et al. Measurement of a CD and sidewall angle artifact with two-dimensional CD AFM metrology. In: Proc SPIE, 1996.Google Scholar

  • [25]

    Nagase, M, et al. Metrology of atomic force microscopy for Si nano-structures. Jpn J Appl Phys 1995;34(6S):3382.CrossrefGoogle Scholar

  • [26]

    Novak, P, et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 2009;6(4):279–81.CrossrefPubMedGoogle Scholar

  • [27]

    Afrin R, Yamada T, Ikai A. Analysis of force curves obtained on the live cell membrane using chemically modified AFM probes. Ultramicroscopy 2004;100(3):187–95.CrossrefPubMedGoogle Scholar

  • [28]

    Dulub O, Boatner LA, Diebold U. STM study of the geometric and electronic structure of ZnO (0001)-Zn,(0001)-O,(1010), and (1120) surfaces. Surf Sci 2002;519(3):201–17.CrossrefGoogle Scholar

  • [29]

    Wildoer, JW, et al. Electronic structure of atomically resolved carbon nanotubes. Nature 1998;391(6662):59.CrossrefGoogle Scholar

  • [30]

    Rugar D, Hansma P. Atomic force microscopy. Phys Today 1990;43(10):23–30.CrossrefGoogle Scholar

  • [31]

    Eaton P, West P. Atomic force microscopy. New York: Oxford University Press, 2010.Google Scholar

  • [32]

    Shi S, Guo D, Luo J. Enhanced phase and amplitude image contrasts of polymers in bimodal atomic force microscopy. RSC Adv 2017;7(19):11768–76.CrossrefGoogle Scholar

  • [33]

    Albers, BJ, et al. Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nanotechnol 2009;4(5):307–10.CrossrefPubMedGoogle Scholar

  • [34]

    Palacio ML, Bhushan B. Normal and lateral force calibration techniques for AFM cantilevers. Crit Rev Solid State Mater Sci 2010;35(2):73–104.CrossrefGoogle Scholar

  • [35]

    Sears J. AFM Artifacts. 2015, Available at: https://blog.cian-erc.org/2015/01/02/afm-artifacts/.

  • [36]

    Kang, M, et al. Confocal laser scanning microscopy measurement of the morphology of vanadium pentoxide nanorods grown by electron beam irradiation or thermal oxidation. J Nanophotonics 2013;7(1):073797.CrossrefGoogle Scholar

  • [37]

    Balaji J, Maiti S. Quantitative measurement of the resolution and sensitivity of confocal microscopes using line‐scanning fluorescence correlation spectroscopy. Microsc Res Tech 2005;66(4):198–202.CrossrefPubMedGoogle Scholar

  • [38]

    Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990;248(4951):73–76.CrossrefPubMedGoogle Scholar

  • [39]

    Kim SW, Kim GH. Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry. Appl Opt 1999;38(28):5968–73.CrossrefPubMedGoogle Scholar

  • [40]

    Raymond CJ. Scatterometry for semiconductor metrology. New York: Marcel Dekker, Inc., 2001:477–514.Google Scholar

  • [41]

    Shen Y, Zhu Q, Zhang Z. A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Rev Sci Instrum 2003;74(11):4885–92.CrossrefGoogle Scholar

  • [42]

    Wasserman, SR, et al. The structure of self-assembled monolayers of alkylsiloxanes on silicon: a comparison of results from ellipsometry and low-angle x-ray reflectivity. J Am Chem Soc 1989;111(15):5852–61.CrossrefGoogle Scholar

  • [43]

    Thoma, M, et al. Ellipsometry and X-ray reflectivity studies on monolayers of phosphatidylethanolamine and phosphatidylcholine in contact with n-dodecane, n-hexadecane, and bicyclohexyl. Langmuir 1996;12(7):1722–28.CrossrefGoogle Scholar

  • [44]

    Braslau, A, et al. Surface roughness of water measured by x-ray reflectivity. Phys Rev Lett 1985;54(2):114.CrossrefGoogle Scholar

  • [45]

    Aspnes D, Theeten J, Hottier F. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys Rev B 1979;20(8):3292.CrossrefGoogle Scholar

  • [46]

    Grutter, AJ, et al. Interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices. Phys Rev Lett 2013;111(8):087202.CrossrefPubMedGoogle Scholar

  • [47]

    Cho, YJ, et al. Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties. Appl Phys Lett 2002;80(7):1249–51.CrossrefGoogle Scholar

  • [48]

    Park, C, et al. XPS and XRR studies on microstructures and interfaces of DLC films deposited by FCVA method. Thin Solid Films 2002;420:235–40.Google Scholar

  • [49]

    Duparre, A, et al. Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. Appl Opt 2002;41(1):154–71.PubMedCrossrefGoogle Scholar

  • [50]

    Ferré-Borrull J, Duparré A, Quesnel E. Procedure to characterize microroughness of optical thin films: application to ion-beam-sputtered vacuum-ultraviolet coatings. Appl Opt 2001;40(13):2190–99.PubMedCrossrefGoogle Scholar

  • [51]

    Senthilkumar, M, et al. Characterization of microroughness parameters in gadolinium oxide thin films: a study based on extended power spectral density analyses. Appl Surf Sci 2005;252(5):1608–19.CrossrefGoogle Scholar

  • [52]

    Khamesee, MB, et al. Nanofractal analysis of material surfaces using atomic force microscopy. Mater Trans 2004;45(2):469–78.CrossrefGoogle Scholar

  • [53]

    Mandelbrot BB, Pignoni R. The fractal geometry of nature, vol. 173. New York: WH freeman, 1983.Google Scholar

  • [54]

    Russ JC. Fractal surfaces. New York: Springer Science & Business Media, 2013.Google Scholar

  • [55]

    Dumas, P, et al. Quantitative microroughness analysis down to the nanometer scale. EPL (Europhysics Letters) 1993;22(9):717.CrossrefGoogle Scholar

  • [56]

    Church EL, Takacs PZ. Effects of the optical transfer function in surface profile measurements. In: Proc SPIE, 1989.Google Scholar

  • [57]

    Gibaud A, Hazra S. X-ray reflectivity and diffuse scattering. Curr Sci 2000; 78(12): 1467–77.Google Scholar

  • [58]

    Newton RG. Scattering theory of waves and particles. New York: Springer Science & Business Media, 2013.Google Scholar

  • [59]

    Pershan PS, Als-Nielsen J. X-ray reflectivity from the surface of a liquid crystal: surface structure and absolute value of critical fluctuations. Phys Rev Lett 1984;52(9):759.CrossrefGoogle Scholar

  • [60]

    Schwab, AD, Agra DMG, Kim JH, Kumar S, & Dhinojwala A. Surface dynamics in rubbed polymer thin films probed with optical birefringence measurements. Macromolecules 2000;33(13):4903–09.CrossrefGoogle Scholar

  • [61]

    Briscoe, WH, Agra DMG, Kim JH, Kumar S, & Dhinojwala A. Applying grazing incidence X-ray reflectometry (XRR) to characterising nanofilms on mica. J Colloid Interface Sci 2007;306(2):459–63.CrossrefPubMedGoogle Scholar

  • [62]

    Wen, M, Agra DMG, Kim JH, Kumar S, & Dhinojwala A. Modulation periodicity dependent structure, stress, and hardness in NbN/W2N nanostructured multilayer films. J Appl Phys 2011;109(12):123525.CrossrefGoogle Scholar

  • [63]

    Frost F, Schindler A, Bigl F. Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws. Phys Rev Lett 2000;85(19):4116.CrossrefPubMedGoogle Scholar

About the article

Published Online: 2018-01-09

Published in Print: 2018-01-26


Citation Information: Physical Sciences Reviews, Volume 3, Issue 1, 20170057, ISSN (Online) 2365-659X, ISSN (Print) 2365-6581, DOI: https://doi.org/10.1515/psr-2017-0057.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in