Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

The problem of fouling in submerged membrane bioreactors – Model validation and experimental evidence

Irene Tsibranska / Serafim Vlaev / Bartosz Tylkowski
  • Chemistry Technology Centre of Catalonia (CTQC), C/Marcel·lí Domingo, 43007 Tarragona, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-05 | DOI: https://doi.org/10.1515/psr-2017-0143

Abstract

Integrating biological treatment with membrane separation has found a broad area of applications and industrial attention. Submerged membrane bioreactors (SMBRs), based on membrane modules immersed in the bioreactor, or side stream ones connected in recycle have been employed in different biotechnological processes for separation of thermally unstable products. Fouling is one of the most important challenges in the integrated SMBRs. A number of works are devoted to fouling analysis and its treatment, especially exploring the opportunity for enhanced fouling control in SMBRs. The main goal of the review is to provide a comprehensive yet concise overview of modeling the fouling in SMBRs in view of the problematics of model validation, either by real system measurements at different scales or by analysis of the obtained theoretical results. The review is focused on the current state of research applying computational fluid dynamics (CFD) modeling techniques.

Keywords: membrane fouling; computational fluid dynamics; submerged membrane bioreactors

References

  • [1]

    Brannock MWD, De Wever H, Wang Y, Leslie G. CFD Simulations of MBRs: inside submerged versus outside submerged membranes. Desalination. 2009;236:244–51.CrossrefGoogle Scholar

  • [2]

    He Y, Bagley DM, Leung KT, Liss SN, Liao B-Q. Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv. 2012;30:817–58.PubMedCrossrefGoogle Scholar

  • [3]

    Wibisono Y, Cornelissen ER, Kemperman AJB, Van Der Meer WGJ, Nijmeijer K. Two-phase flow in membrane processes: a technology with a future. J Memb Sci. 2014;453:566–602.CrossrefGoogle Scholar

  • [4]

    Judd S. The status of membrane bioreactor technology. Trends Biotechnol. 2008;26(2):109–16.CrossrefPubMedGoogle Scholar

  • [5]

    Mutamim NSA, Noor ZZ, Hassan MAA, Yuniarto A, Olsson G. Membrane bioreactor: applications and limitations in treating high strength industrial wastewater. Chem Eng J. 2013;225:109–19.CrossrefGoogle Scholar

  • [6]

    Mutamim NSA, Noor ZZ, Hassan MAA, Olsson G. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination. 2012;305:1–11.CrossrefGoogle Scholar

  • [7]

    Tambosi J, De Sena R, Favier M, Gebhardt W, José H, Schröder H, et al. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination. 2010;261:148–56.CrossrefGoogle Scholar

  • [8]

    Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD. Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegradation. 2013;85:474–82.CrossrefGoogle Scholar

  • [9]

    Bakonyi P, Nemestóthy N, Simon V, Bélafi-Bakó K. Fermentative hydrogen production in anaerobic membrane bioreactors: a review. Bioresour Technol. 2014;156:357–63.CrossrefPubMedGoogle Scholar

  • [10]

    Mohammadmahdi M, Stickel J, Wickramasinghe SR. Investigation of a submerged membrane reactor for continuous biomass hydrolysis. Food Bioprod Process. 2015;96:189–97.CrossrefGoogle Scholar

  • [11]

    Jiang H, Qu Z, Li Y, Huang J, Chen R, Xing W. One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor. Chem Eng J. 2016;284:724–32.CrossrefGoogle Scholar

  • [12]

    Dosta J, Nieto JM, Vila J, Grifoll M, Mata-Álvarez J. Phenol removal from hypersaline wastewaters in a membrane biological reactor (MBR): operation and microbiological characterisation. Bioresour Technol. 2011;102(5):4013–20.CrossrefGoogle Scholar

  • [13]

    Andrić P, Meyer AS, Jensen PA, Dam-Johansen K. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv. 2010;28:407–25.CrossrefPubMedGoogle Scholar

  • [14]

    Sengur R, Deveci G, Kaya R, Turken T, Guclu S, Imer DY, et al. CFD modeling of submerged membrane bioreactors (sMBRs): a review. Desalinat Water Treatment. 2015;55(7):1747–61.CrossrefGoogle Scholar

  • [15]

    Naessens W, Maere T, Ratkovich N, Vedantam S, Nopens I. Critical review of membrane bioreactor models – Part 2: hydrodynamic and integrated models. Bioresour Technol. 2012;122:107–18.CrossrefPubMedGoogle Scholar

  • [16]

    Boyle-Gotla A, Jensen PD, Yap SD, Pidou M, Wang Y, Batstone DJ. Dynamic multidimensional modelling of submerged membrane bioreactor fouling. J Memb Sci. 2014;467:153–61.CrossrefGoogle Scholar

  • [17]

    Ndinisa NV, Fane AG, Wiley DE, Fletcher DF. Fouling control in a submerged flat sheet membrane system: part II—two‐phase flow characterization and CFD simulations. Sep Sci Technol. 2006;41(7):1411–45.CrossrefGoogle Scholar

  • [18]

    Vargas A, Moreno-Andrade I, Buitrón G. Controlled backwashing in a membrane sequencing batch reactor used for toxic wastewater treatment. J Memb Sci. 2008;320(1):185–90.CrossrefGoogle Scholar

  • [19]

    Trad Z, Vial C, Fontaine JP, Larroche C. Modeling of hydrodynamics and mixing in a submerged membrane bioreactor. Chem Eng J. 2015;282:77–90.CrossrefGoogle Scholar

  • [20]

    Yan X, Wu Q, Sun J, Liang P, Zhang X, Xiao K, et al. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics. Bioresour Technol. 2016;200:328–34.PubMedCrossrefGoogle Scholar

  • [21]

    Cui ZF, Chang S, Fane AG. The use of gas bubbling to enhance membrane processes. J Memb Sci. 2003;221(1):1–35.CrossrefGoogle Scholar

  • [22]

    Braak E, Alliet M, Schetrite S, Albasi C. Aeration and hydrodynamics in submerged membrane bioreactors. J Memb Sci. 2011;379(1):1–18.CrossrefGoogle Scholar

  • [23]

    Wei P, Zhang K, Gao W, Kong L, Field R. CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor. J Memb Sci. 2013;445:15–24.CrossrefGoogle Scholar

  • [24]

    Qi C, Wang J, Lin Y. New insight into influence of mechanical stirring on membrane fouling of membrane bioreactor: mixed liquor properties and hydrodynamic conditions. Bioresour Technol. 2016;211:654–63.CrossrefPubMedGoogle Scholar

  • [25]

    Liu X, Wang Y, Waite TD, Leslie G. Fluid structure interaction analysis of lateral fibre movement in submerged membrane reactors. J Memb Sci. 2016;504:240–50.CrossrefGoogle Scholar

  • [26]

    Du X, Qu FS, Liang H, Li K, Bai LM, Li GB. Control of submerged hollow fiber membrane fouling caused by fine particles in photocatalytic membrane reactors using bubbly flow: shear stress and particle forces analysis. Separation Purif Technol. 2017;172:130–39.CrossrefGoogle Scholar

  • [27]

    Meng L, Cheng JC, Jiang H, Yang C, Xing WH, Jin WQ. Design and analysis of a submerged membrane reactor by CFD simulation. Chem Eng Technol. 2013;36(11):1874–82.CrossrefGoogle Scholar

  • [28]

    Vlaev SD, Tsibranska I. Shear stress generated by radial flow impellers at bioreactor-integrated membranes. Theor Foundations Chem Eng. 2016;50(6):959–68.CrossrefGoogle Scholar

  • [29]

    Brannock M, Wang Y, Leslie G. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation. Water Res. 2010;44(10):3181–91.CrossrefPubMedGoogle Scholar

  • [30]

    Chen C, Bin L, Tang B, Huang S, Fu F, Chen Q, et al. Cultivating granular sludge directly in a continuous-flow membrane bioreactor with internal circulation. Chem Eng J. 2017;309:108–17.CrossrefGoogle Scholar

  • [31]

    Le-Clech P, Chen V, Fane TA. Fouling in membrane bioreactors used in wastewater treatment. J Memb Sci. 2006;284(1):17–53.CrossrefGoogle Scholar

  • [32]

    Wicklein E, Batstone DJ, Ducoste J, Laurent J, Griborio A, Wicks J, et al. Good modelling practice in applying computational fluid dynamics for WWTP modelling. Water Sci Technol. 2016;73(5):969–82.PubMedGoogle Scholar

  • [33]

    Bentzen TR, Ratkovich N, Rasmussen MR, Madsen S, Jensen JC, Bak SN Numerical modelling of non-Newtonian fluid in a rotational cross-flow MBR. In: 6th IWA Specialist Conference on Membrane Technology for Water and Wastewater Treatment, 2011.Google Scholar

  • [34]

    Karpinska AM, Bridgeman J. CFD-aided modelling of activated sludge systems–A critical review. Water Res. 2016;88:861–79.PubMedCrossrefGoogle Scholar

  • [35]

    Liu X, Wang Y, Waite TD, Leslie G. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration. Water Res. 2015;75:131–45.PubMedCrossrefGoogle Scholar

  • [36]

    Judd SJ, Le-Clech P, Taha T, Cui ZF. Theoretical and experimental representation of a submerged membrane bio-reactor system. Membr Technol. 2001;135:4–9.Google Scholar

  • [37]

    Yang J, Vedantam S, Spanjers H, Nopens I, Van Lier JB. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling. Water Res. 2012;46:4705–12.CrossrefGoogle Scholar

  • [38]

    Yang M, Yu D, Liu M, Zheng L, Zheng X, Wei Y, et al. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design. Bioresour Technol. 2017;227:102–11.CrossrefPubMedGoogle Scholar

  • [39]

    Kurita T, Kimura K, Watanabe Y. Energy saving in the operation of submerged MBRs by the insertion of baffles and the introduction of granular materials. Separation Purif Technol. 2015;141:207–13.CrossrefGoogle Scholar

  • [40]

    Ding A, Liang H, Li G, Derlon N, Szivak I, Morgenroth E, et al. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water. J Memb Sci. 2016;510:382–90.CrossrefGoogle Scholar

  • [41]

    Praneeth K, Moulik S, Vadthya P, Bhargava SK, Tardio J, Sridhar S. Performance assessment and hydrodynamic analysis of a submerged membrane bioreactor for treating dairy industrial effluent. J Hazard Mater. 2014;274:300–13.CrossrefPubMedGoogle Scholar

  • [42]

    Shimizu Y, Uryu K, Okuno YI, Watanabe A. Cross-flow microfiltration of activated sludge using submerged membrane with air bubbling. J Ferment Bioeng. 1996;81(1):55–60.CrossrefGoogle Scholar

  • [43]

    Böhm L, Drews A, Prieske H, Bérubé PR, Kraume M. The importance of fluid dynamics for MBR fouling mitigation. Bioresour Technol. 2012;122:50–61.CrossrefPubMedGoogle Scholar

  • [44]

    Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: state of the art and opportunities. Chem Eng Process. 2006;45:437–54.CrossrefGoogle Scholar

  • [45]

    Germain E, Stephenson T, Pearce P. Biomass characteristics and membrane aeration: toward a better understanding of membrane fouling in submerged membrane bioreactors (MBRs). Biotechnol Bioeng. 2005;90:316–22.CrossrefGoogle Scholar

  • [46]

    Sofia A, Ng WJ, Ong SL. Engineering design approaches for minimum fouling in submerged MBR. Desalination. 2004;160:67–74.CrossrefGoogle Scholar

  • [47]

    Hong H, Zhang M, He Y, Chen J, Lin H. Fouling mechanisms of gel layer in a submerged membrane bioreactor. Bioresour Technol. 2014;166:295–302.CrossrefGoogle Scholar

  • [48]

    Wu J, He C, Jiang X, Zhang M. Modeling of the submerged membrane bioreactor fouling by the combined pore constriction, pore blockage and cake formation mechanisms. Desalination. 2011;279(1):127–34.CrossrefGoogle Scholar

  • [49]

    Zhang M, Peng W, Chen J, He Y, Ding L, Wang A, et al. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration. Water Res. 2013;47(8):2777–86.CrossrefPubMedGoogle Scholar

  • [50]

    Zarragoitia-González A, Schetrite S, Alliet M, Jáuregui-Haza U, Albasi C. Modelling of submerged membrane bioreactor: conceptual study about link between activated slugde biokinetics, aeration and fouling process. J Memb Sci. 2008;325(2):612–24.CrossrefGoogle Scholar

  • [51]

    Li X, Mo Y, Li J, Guo W, Ngo HH. In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: a critical review. J Memb Sci. 2017;528:187–200.CrossrefGoogle Scholar

  • [52]

    Aslam M, Charfi A, Lesage G, Heran M, Kim J. Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling. Chem Eng J. 2017;307:897–913.CrossrefGoogle Scholar

  • [53]

    Fane AG. Submerged membranes. In: Li NN, Fane AG, Ho WS, Matsuura T, editors.. Advanced membrane technology and applications. New Jersey: Wiley, 2008: 239–70.Google Scholar

  • [54]

    Menniti A, Kang S, Elimelech M, Morgenroth E. Influence of shear on production of extracellular polymeric substances in membrane bioreactors. Water Res. 2009;43(17):4305–15.CrossrefPubMedGoogle Scholar

  • [55]

    Parvareh A, Rahimi M, Madaeni SS, Alsairafi AA. Experimental and CFD study on the role of fluid flow pattern on membrane permeate flux. Chin J Chem Eng. 2011;19(1):18–25.CrossrefGoogle Scholar

  • [56]

    Meng F, Zhang S, Oh Y, Zhou Z, Shin HS, Chae SR. Fouling in membrane bioreactors: an updated review. Water Res. 2017;114:151–80.CrossrefPubMedGoogle Scholar

  • [57]

    Ratkovich N, Hunze M, Nopens I. Hydrodynamic study of a hollow fiber membrane system using experimentally and numerically derived surface shear stresses. Multiphase Sci Technol. 2012;24(1):47–66.CrossrefGoogle Scholar

  • [58]

    Ratkovich N, Bentzen TR. Comparison of four types of membrane bioreactor systems in terms of shear stress over the membrane surface using computational fluid dynamics. Water Sci Technol. 2013;68(12):2534–44.CrossrefPubMedGoogle Scholar

  • [59]

    Duc ENC, Fournier L, Levecq C, Lesjean B, Grelier P, Tazi-Pain A. Local hydrodynamic investigation of the aeration in a submerged hollow fibre membranes cassette. J Memb Sci. 2008;321:264–71.CrossrefGoogle Scholar

  • [60]

    Khalili A, Mehrnia MR, Mostoufi N, Sarrafzadeh MH. Analyze and control fouling in an airlift membrane bioreactor: CFD simulation and experimental studies. Process Biochem. 2011;46:1138–45.CrossrefGoogle Scholar

  • [61]

    Jafarkhani M, Moraveji MK, Davarnejad R, Moztarzadeh F, Mozafari M. Three-dimensional simulation of turbulent flow in a membrane tube filled with semi-circular baffles. Desalination. 2012;294:8–16.CrossrefGoogle Scholar

  • [62]

    Ahmed S, Seraji MT, Jahedi J, Hashib MA. CFD simulation of turbulence promoters in a tubular membrane channel. Desalination. 2011;276:191–98.CrossrefGoogle Scholar

  • [63]

    Prieske H, Drews A, Kraume M. Prediction of the circulation velocity in a membrane bioreactor. Desalination. 2008;231:219–26.CrossrefGoogle Scholar

  • [64]

    Marcos B, Moresoli C, Skorepova J, Vaughan B. CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration. J Memb Sci. 2009;337(1–2):136–44.CrossrefGoogle Scholar

  • [65]

    Liang YY, Fimbres-Weihs G, Setiawan R, Wiley D. CFD modelling of unsteady electro-osmotic permeate flux enhancement in membrane systems. Chem Eng Sci. 2016;146:189–98.CrossrefGoogle Scholar

  • [66]

    Ameur H, Sahel D. Effect of the baffle design and orientation on the efficiency of a membrane tube. Chem Eng Res Des. 2017;117:500–08.CrossrefGoogle Scholar

  • [67]

    Ratkovich N, Chan CCV, Berube PR, Nopens I. Experimental study and CFD modelling of a two-phase slug flow for an airlift tubular membrane. Chem Eng Sci. 2009;64:3545–720.Google Scholar

  • [68]

    Faridirad F, Zourmand Z, Kasiri N, Moghaddam MK, Mohammadi T. Modeling of suspension fouling in nanofiltration. Desalination. 2014;346:80–90.CrossrefGoogle Scholar

  • [69]

    Du X, Qu F, Liang H, Li K, Chang H, Li G. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling. Environ Sci Pollut Res. 2016;23(9):8806–18.CrossrefGoogle Scholar

  • [70]

    Ghidossi R, Carretier E, Veyret D, Dhaler D, Moulin P. Optimizing the compacity of ceramic membranes. J Memb Sci. 2010;360:483–92.CrossrefGoogle Scholar

  • [71]

    Rahimi M, Madaeni SS, Abolhasani M, Alsairafi AA. CFD and experimental studies of fouling of a microfiltration membrane. Chem Eng Processing: Intensification. 2009;48:1405–13.CrossrefGoogle Scholar

  • [72]

    Alexiadis A, Wiley DE, Vishnoi A, Lee RHK, Fletcher DF, Bao J. CFD modelling of reverse osmosis membrane flow and validation with experimental results. Desalination. 2007;217(1–3):242–50.CrossrefGoogle Scholar

  • [73]

    Liang YY, Chapman MB, Weihs GAF GA, Wiley DE. CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. J Memb Sci. 2014;470:378–88.CrossrefGoogle Scholar

  • [74]

    Willems P, Deen NG, Kemperman AJB, Lammertink RGH, Wessling M, Van Sint Annaland M, et al. van der Meer WGJ. Use of particle imaging velocimetry to measure liquid velocity profiles in liquid and liquid/gas flows through spacer filled channels. J Memb Sci. 2010;362:143–53.CrossrefGoogle Scholar

  • [75]

    Lee K-J, Wu R-M. Simulation of resistance of cross-flow microfiltration and force analysis on membrane surface. Desalination. 2008;233(1–3):239–46.CrossrefGoogle Scholar

  • [76]

    Karabelas AJ, Kostoglou M, Koutsou CP. Modeling of spiral wound membrane desalination modules and plants – review and research priorities. Desalination. 2015;356:165–86.CrossrefGoogle Scholar

  • [77]

    Li M, Bui T, Chao S. Three-dimensional CFD analysis of hydrodynamics and concentration polarization in an industrial RO feed channel. Desalination. 2016;397:194–204.CrossrefGoogle Scholar

  • [78]

    Zhuang L, Guo H, Da G, Xu Z-L. Effect of the inlet manifold on the performance of a hollow fiber membrane module- A CFD study. J Memb Sci. 2017;526:73–93.CrossrefGoogle Scholar

  • [79]

    Kaya R, Deveci G, Turken T, Sengur R, Guclu S, Koseoglu-Imer DY, et al. Analysis of wall shear stress on the outside-in type hollow fiber membrane modules by CFD simulation. Desalination. 2014;351:109–19.CrossrefGoogle Scholar

  • [80]

    Fimbres-Weihs GA, Wiley DE. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chem Eng Processing: Intensification. 2010;49(7):759–81.CrossrefGoogle Scholar

  • [81]

    Li Y-L, Tung K-L. CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions. Desalination. 2008;233(1–3):351–58.CrossrefGoogle Scholar

  • [82]

    Vinther F, Pinelo M, Brøns M, Jonsson G, Meyer AS. Predicting optimal back-shock times in ultrafiltration hollow fiber modules II: effect of inlet flow and concentration dependent viscosity. J Memb Sci. 2015;493:486–95.CrossrefGoogle Scholar

  • [83]

    Setiawan R, Ratnayake P, Bao J, Fimbres-Weihs GA, Wiley DE. Reduced-order model for the analysis of mass transfer enhancement in membrane channel using electro-osmosis. Chem Eng Sci. 2015;122:86–96.CrossrefGoogle Scholar

  • [84]

    Zourmand Z, Faridirad F, Kasiri N, Mohammadi T. Mass transfer modeling of desalination through an electrodialysis cell. Desalination. 2015;359:41–51.CrossrefGoogle Scholar

  • [85]

    Xie P, Murdoch LC, Ladner DA. Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance. J Memb Sci. 2014;453:92–99.CrossrefGoogle Scholar

  • [86]

    Kawachale N, Kirpalani DM, Kumar A. A mass transport and hydrodynamic evaluation of membrane separation cell. Chem Eng Processing: Intensification. 2010;49:680–88.CrossrefGoogle Scholar

  • [87]

    Amokrane M, Sadaoui D, Koutsou CP, Karabelas AJ, Dudeck M. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination. J Memb Sci. 2015;477(1):139–50.CrossrefGoogle Scholar

  • [88]

    Sarkar D, Datta D, Sen D, Bhattacharjee C. Simulation of continuous stirred rotating disk-membrane module: an approach based on surface renewal theory. Chem Eng Sci. 2011;66(12):2554–67.CrossrefGoogle Scholar

  • [89]

    Krzeminski P, Leverette L, Malamis S, Katsou E. Membrane bioreactors–a review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J Memb Sci. 2017;527:207–27.CrossrefGoogle Scholar

  • [90]

    Pimentel GA, Almeida P, Hantson AL, Rapaport A, Wouwe AV. Experimental validation of a simple dynamic model of a laboratory scale recirculating aquaculture system fitted with a submerged membrane bioreactor. Biochem Eng J. 2017;122:1–12.CrossrefGoogle Scholar

  • [91]

    Robles A, Ruano MV, Ribes J, Seco A, Ferrer J. A filtration model applied to submerged anaerobic MBRs (SAnMBRs). J Memb Sci. 2013;444:139–47.CrossrefGoogle Scholar

  • [92]

    Kang C, Hua J, Lou J, Liu W, Jordan E. Bridging the gap between membrane bio-reactor (MBR) pilot and plant studies. J Memb Sci. 2008;325:861–71.CrossrefGoogle Scholar

  • [93]

    Liu X, Wang Y, Waite TD, Leslie G. Numerical simulations of impact of membrane module design variables on aeration patterns in membrane bioreactors. J Memb Sci. 2016;520:201–13.CrossrefGoogle Scholar

  • [94]

    Oberkampf WL, Trucano TG, Hirsch C. Verification, validation, and predictive capability in computational engineering and physics. Appl Mechanics Rev. 2004;57(5):345–84.CrossrefGoogle Scholar

  • [95]

    Stern F, Wilson RV, Coleman HW, Paterson EG. Comprehensive approach to verification and validation of CFD simulations-Part 1: methodology and procedures. Trans-Am Soc Mech Engi J Fluids Eng. 2001;123(4):793–802.Google Scholar

  • [96]

    Fimbres Weihs GA, Wiley DE. CFD analysis of tracer response technique under cake-enhanced osmotic pressure. J Memb Sci. 2014;449:38–49.CrossrefGoogle Scholar

  • [97]

    Monfared MA, Kasiri N, Salahi A, Mohammadi T. CFD simulation of baffles arrangement for gelatin-water ultrafiltration in rectangular channel. Desalination. 2012;284:288–96.CrossrefGoogle Scholar

  • [98]

    Abbasi Monfared M, Kasiri N, Salahi A, Mohammadi T. Modeling ultrafiltration of gelatin–water suspension by computational fluid dynamics. Chemichal Eng Res Des. 2012;90(8):1098–104.CrossrefGoogle Scholar

  • [99]

    Brannock MWD, Wang Y, Leslie G. Evaluation of full-scale membrane bioreactor mixing performance and the effect of membrane configuration. J Memb Sci. 2010;350:101–08.CrossrefGoogle Scholar

  • [100]

    Koutsou CP, Yiantsios SG, Karabelas AJ. Effects of spacer geometrical characteristics and Schmidt number. J Memb Sci. 2009;326:234–51.CrossrefGoogle Scholar

  • [101]

    Martinelli L, Guigui C, Line A. Characterisation of hydrodynamics induced by air injection related to membrane fouling behavior. Desalination. 2010;250:587–91.CrossrefGoogle Scholar

  • [102]

    Fortunato L, Jeong S, Wang Y, Behzad AR, Leiknes T. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor. Bioresour Technol. 2016;222:335–43.PubMedCrossrefGoogle Scholar

  • [103]

    Fortunato L, Leiknes T. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping. Bioresour Technol. 2017;229:231–35.CrossrefPubMedGoogle Scholar

  • [104]

    Reiss LP, Hanratty TJ. An experimental study of the unsteady nature of the viscous sublayer. AIChE J. 1963;9:154–60.CrossrefGoogle Scholar

  • [105]

    Vlaev SD, Nikov I, Martinov M. Shear and skin friction on particles in power-law fluids agitated by flat-blade and fluid foil impellers. Chem Eng Sci. 2006;61:5455–67.CrossrefGoogle Scholar

  • [106]

    Koutsou CP, Karabelas AJ. Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers. J Memb Sci. 2012;399-400:60–72.CrossrefGoogle Scholar

  • [107]

    Chan CCV, Bérubé PR, Hall ER. Shear profiles inside gas sparged submerged hollow fiber membrane modules. J Memb Sci. 2007;297(1):104–20.CrossrefGoogle Scholar

  • [108]

    Böhm L, Kraume M. Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems. J Memb Sci. 2015;475:533–44.CrossrefGoogle Scholar

  • [109]

    Vlaev SD, Tsibranska I, Dzhonova D, Georgiev D. Preconditions of separations in STR with integrated membrane for energy-saving by recovery of value-added materials. Machines, Technologies, Materials, Int Sci J. 2016;9:22–25.Google Scholar

  • [110]

    Wang Y, Brannock M, Cox S, Leslie G. CFD simulation of membrane filtration zone in a submerged hollow fibre membrane bioreactor using porous media approach. J Memb Sci. 2010;363(1-2):57–66.CrossrefGoogle Scholar

About the article

Published Online: 2018-01-05

Published in Print: 2018-01-26


This work was financially supported by the National Science Fund at the Bulgarian Ministry of Education and Science, Contract No DN 07/11/15.12.2016.


Citation Information: Physical Sciences Reviews, Volume 3, Issue 1, 20170143, ISSN (Online) 2365-659X, ISSN (Print) 2365-6581, DOI: https://doi.org/10.1515/psr-2017-0143.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in