Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Magnetic resonance spectroscopy approaches for electrochemical research

Anastasia Vyalikh
  • Corresponding author
  • Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Freiberg 09596, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Köhler / Tatiana Zakharchenko / Daniil M. Itkis / Andraž Krajnc / Gregor Mali
Published Online: 2018-07-11 | DOI: https://doi.org/10.1515/psr-2017-0155


In this review paper, we provide a short overview of the application of magnetic resonance techniques in electrochemical studies. Brief theoretical descriptions, sensitivity aspects, challenges and new opportunities of nuclear magnetic resonance and electron paramagnetic resonance have been presented here. Particular attention will be paid to the studies using ex situ and in situ methodologies and their combination to address the questions concerning the intrinsic structures and the structural transformations, ionic mobility and interfacial interactions in the energy storage and energy conversion systems. In addition, theoretical approaches to support the experimental NMR observables as well as magnetic resonance imaging have been discussed in the context of improving electrochemical performance, cycling stability and safety of batteries.

Keywords: nuclear magnetic resonance (NMR); electron paramagnetic resonance (EPR); density functional theory (DFT); imaging; in situ NMR; solid ionic conductors; lithium-air batteries; ionic mobility


  • [1]

    Slichter CP. Principles of magnetic resonance, ed. Berlin, New York: Springer-Verlag, 1978.Google Scholar

  • [2]

    Abragam A. The principles of nuclear magnetism, Reprint. Oxford u.a.: Oxford University Press, 2006.Google Scholar

  • [3]

    Grey CP, Lee YJ. Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci. 2003;5:883–94.CrossrefGoogle Scholar

  • [4]

    Abbrent S, Greenbaum S. Recent progress in NMR spectroscopy of polymer electrolytes for lithium batteries. Curr Opin Colloid Interface Sci. 2013;18:228–44.CrossrefGoogle Scholar

  • [5]

    Blanc F, Leskes M, Grey CP. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells. Acc Chem Res. 2013;46:1952–63CrossrefPubMedGoogle Scholar

  • [6]

    Oschatz M, Borchardt L, Hippauf F, Nickel W, Kaskel S, Brunner E. Interactions between electrolytes and carbon-based materials—NMR studies on electrical double-layer capacitors, lithium-ion batteries, and fuel cells. In: Webb GA, editor. Annual reports on NMR spectroscopy, Vol. 87. Oxford: Academic Press, 2016:237–318.Google Scholar

  • [7]

    Griffin JM, Forse AC, Grey CP. Solid-state NMR studies of supercapacitors. Solid State Nucl Magn Reson. 2016;74–5:16–35.PubMedGoogle Scholar

  • [8]

    Vinod Chandran C, Heitjans P. Solid-state NMR studies of lithium ion dynamics across materials classes. In: Webb GA, editor. Annual reports on NMR spectroscopy, Vol. 89. Saint Louis: Elsevier Science, 2016:1–102.Google Scholar

  • [9]

    Borzutzki K, Brunklaus G. Magnetic resonance imaging studies of the spatial distribution of charge carriers. In: Webb GA, editor. Annual reports on NMR spectroscopy, 1st ed. Vol. 91. London: Academic Press, 2017:115–41.Google Scholar

  • [10]

    Stone NJ. Table of nuclear magnetic dipole and electric quadrupole moments. Parks Road, OXFORD OX1 3PU U.K.: Clarendon Laboratory,2005;90:175–6.Google Scholar

  • [11]

    Vyalikh A, Vizgalov V, Itkis DM, Meyer DC. Investigation of ionic mobility in NASICON-type solid electrolytes. J Phys: Conf Ser. 2016;758:12014.Google Scholar

  • [12]

    Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev. 2013;113:6552–91.CrossrefPubMedGoogle Scholar

  • [13]

    Leo CJ, Chowdari B, Subba Rao GV, Souquet JL. Lithium conducting glass ceramic with NASICON structure. Mater Res Bull. 2002;37:1419–30.CrossrefGoogle Scholar

  • [14]

    París MA, Sanz J. Structural changes in the compounds LiM2IV(PO4)3 (MIV =Ge, Ti, Sn, and Hf) as followed by 31P and 7Li NMR. Phys Rev B. 1997;55:14270–78.CrossrefGoogle Scholar

  • [15]

    Vizgalov VA, Nestler T, Trusov LA, Bobrikov IA, Ivankov OI, Avdeev MV, Motylenko M, et al. Enhancing lithium-ion conductivity in NASICON glass-ceramics by adding yttria. Cryst Eng Comm. 2018;20:1375–82.CrossrefGoogle Scholar

  • [16]

    Van Vleck JH. The dipolar broadening of magnetic resonance lines in crystals. Phys Rev. 1948;74:1168–83.CrossrefGoogle Scholar

  • [17]

    Arbi K, Tabellout M, Lazarraga MG, Rojo JM, Sanz J. Non-Arrhenius conductivity in the fast lithium conductor Li1.2Ti1.8Al0.2(PO4)3: a 7Li NMR and electric impedance study. Phys Rev B. 2005;72.Google Scholar

  • [18]

    Arbi K, Paris MA, Sanz J. Li mobility in NASICON-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy. Dalton Transactions (Cambridge, England: 2003). 2011;40:10195–202.CrossrefGoogle Scholar

  • [19]

    Soman S, Iwai Y, Kawamura J, Kulkarni A. Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic. J Solid State Electrochem. 2012;16:1761–6.CrossrefGoogle Scholar

  • [20]

    Arbi K, Mandal S, Rojo JM, Sanz J. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem Mater. 2002;14:1091–7.CrossrefGoogle Scholar

  • [21]

    Xu X, Wen Z, Wu X, Yang X, Gu Z. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3×Li2O (x=0.0<0.20) with good electrical and electrochemical properties. J Am Ceramic Soc. 2007;90:2802–6.CrossrefGoogle Scholar

  • [22]

    Santagneli SH, Baldacim HVA, Ribeiro SJL, Kundu S, Rodrigues ACM, Doerenkamp C, Eckert H. Preparation, structural characterization, and electrical conductivity of highly ion-conducting glasses and glass ceramics in the system Li1+xAlxSnyGe2-(x+y)(PO4)3. J Phys Chem C. 2016;120:14556–67.CrossrefGoogle Scholar

  • [23]

    Kuhn A, Kunze M, Sreeraj P, Wiemhöfer H-D, Thangadurai V, Wilkening M, Heitjans P. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. Solid State NMR. 2012;42:2–8CrossrefGoogle Scholar

  • [24]

    Messinger RJ, Ménétrier M, Salager E, Boulineau A, Duttine M, Carlier D, Ateba Mba J-M, et al. Revealing defects in crystalline lithium-ion battery electrodes by solid-state NMR: applications to LiVPO4F. Chem Mater. 2015;27:5212–21.CrossrefGoogle Scholar

  • [25]

    Liu Z, Hu -Y-Y, Dunstan MT, Huo H, Hao X, Zou H, Zhong G, Yang Y, Grey CP. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chem Mater. 2014;26:2513–21.CrossrefGoogle Scholar

  • [26]

    Toffoletti L, Kirchhain H, Landesfeind J, Klein W, Van Wullen L, Gasteiger HA, Fassler TF. Lithium ion mobility in lithium phosphidosilicates: crystal structure, 7Li, 29Si, and 31P MAS NMR spectroscopy, and impedance spectroscopy of Li8SiP4 and Li2SiP2. Chemistry. 2016;22:17635–45.CrossrefGoogle Scholar

  • [27]

    Salager E, Sarou-Kanian V, Sathiya M, Tang M, Leriche J-B, Melin P, Wang Z, et al. Solid-state NMR of the family of positive electrode materials Li2Ru1–ySnyO3 for lithium-ion batteries. Chem Mater. 2014;26:7009–19.CrossrefGoogle Scholar

  • [28]

    Freitag KM, Kirchhain H, Van Wullen L, Nilges T. Enhancement of Li ion conductivity by electrospun polymer fibers and direct fabrication of solvent-free separator membranes for Li ion batteries. Inorg Chem. 2017;56:2100–7.CrossrefPubMedGoogle Scholar

  • [29]

    Guérin K, Dubois M, Houdayer A, Hamwi A. Applicative performances of fluorinated carbons through fluorination routes: a review. J Fluor Chem. 2012;134:11–7.CrossrefGoogle Scholar

  • [30]

    Koroteev VO, Münchgesang W, Shubin Y, Palyanov Y, Plyusnin PE, Smirnov DA, Kovalenko KA, et al. Multiscale characterization of 13C-enriched fine-grained graphitic materials for chemical and electrochemical applications. Carbon. 2017;124:161–9.CrossrefGoogle Scholar

  • [31]

    Bösebeck K, Chandran CV, Licht BK, Binnewies M, Heitjans P. Improved electrochemical performance of modified mesocarbon microbeads for lithium-ion batteries studied using solid-state nuclear magnetic resonance spectroscopy. Energy Technol. 2016;4:1598–603.CrossrefGoogle Scholar

  • [32]

    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W. Lithium−air battery: promise and challenges. J Phys Chem Lett. 2010;1:2193–203.CrossrefGoogle Scholar

  • [33]

    Lu Y-C, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Shao-Horn Y. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci. 2013;6:750.CrossrefGoogle Scholar

  • [34]

    Itkis DM, Semenenko DA, Kataev EY, Belova AI, Neudachina VS, Sirotina AP, Havecker M, et al. Reactivity of carbon in lithium-oxygen battery positive electrodes. Nano Lett. 2013;13:4697–701.PubMedCrossrefGoogle Scholar

  • [35]

    Huff LA, Rapp JL, Zhu L, Gewirth AA. Identifying lithium–air battery discharge products through 6Li solid-state MAS and 1H–13C solution NMR spectroscopy. J Power Sources. 2013;235:87–94.CrossrefGoogle Scholar

  • [36]

    Leskes M, Moore AJ, Goward GR, Grey CP. Monitoring the electrochemical processes in the lithium–air battery by solid state NMR spectroscopy. J Phys Chem C. 2013;117:26929–39.Google Scholar

  • [37]

    Leskes M, Drewett NE, Hardwick LJ, Bruce PG, Goward GR, Grey C. Direct detection of discharge products in lithium-oxygen batteries by solid-state NMR spectroscopy. Angew Chem Int Ed. 2012;51:8560–3.Google Scholar

  • [38]

    Reeve ZEM, Pauric AD, Harris KJ, Goward GR. Evaluation of the stability of trimethyl phosphate as a Li–O2 battery electrolyte via multinuclear solid-state NMR. J Phys Chem C. 2015;119:26840–8.CrossrefGoogle Scholar

  • [39]

    Harks P, Mulder FM, Notten P. In situ methods for Li-ion battery research: a review of recent developments. J Power Sources. 2015;288:92–105.CrossrefGoogle Scholar

  • [40]

    Pecher O, Vyalikh A, Grey CP. Challenges and new opportunities of in situ NMR characterization of electrochemical processes. Electrochemical storage materials: supply, processing, recycling and modelling: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials, Freiberg, Germany, 2016;20011 .Google Scholar

  • [41]

    Itkis DM, Velasco-Velez JJ, Knop-Gericke A, Vyalikh A, Avdeev MV, Yashina LV. Probing operating electrochemical interfaces by photons and neutrons. Chem Electro Chem. 2015;2:1427–45.Google Scholar

  • [42]

    Chevallier F, Letellier M, Morcrette M, Tarascon J-M, Frackowiak E, Rouzaud J-N, Béguin F. In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid-State Lett. 2003;6:225.CrossrefGoogle Scholar

  • [43]

    Letellier M, Chevallier F, Morcrette M. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle. Carbon. 2007;45:1025–34.CrossrefGoogle Scholar

  • [44]

    Letellier M, Chevallier F, Béguin F. In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite. J Phys Chem Solids. 2006;67:1228–32.CrossrefGoogle Scholar

  • [45]

    Irisarri E, Ponrouch A, Palacin MR. Review—hard carbon negative electrode materials for sodium-ion batteries. J Electrochem Soc. 2015;162:A2476–A2482.Google Scholar

  • [46]

    Stratford JM, Allan PK, Pecher O, Chater PA, Grey CP. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem Commun. 2016;52:12430–3.CrossrefGoogle Scholar

  • [47]

    Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon J-M, Grey CP. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc. 2009;131:9239–49.PubMedCrossrefGoogle Scholar

  • [48]

    Bhattacharyya R, Key B, Chen H, Best AS, Hollenkamp AF, Grey CP. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater. 2010;9:504–10PubMedCrossrefGoogle Scholar

  • [49]

    Poli F, Wong A, Kshetrimayum JS, Monconduit L, Letellier M. In situ NMR insights into the electrochemical reaction of Cu3P electrodes in lithium batteries. Chem Mater. 2016;28:1787–93.CrossrefGoogle Scholar

  • [50]

    Cattaneo AS, Villa DC, Angioni S, Ferrara C, Melzi R, Quartarone E, Mustarelli P. Operando electrochemical NMR microscopy of polymer fuel cells. Energy Environ Sci. 2015;8:2383–8.CrossrefGoogle Scholar

  • [51]

    Kimmich R. NMR: tomography, diffusometry, relaxometry. Berlin, Heidelberg: Springer-Verlag, 1997.Google Scholar

  • [52]

    Kuhn A, Choi J-Y, Robben L, Tietz F, Wilkening M, Heitjans P. Li ion dynamics in al-doped garnet-type Li7La3Zr2O12 crystallizing with cubic symmetry. Zeitschrift Für Physikalische Chemie. 2012;226:525–37.CrossrefGoogle Scholar

  • [53]

    Berthier C, Chabre Y, Minier M. NMR investigation of the layered transition metal phosphorus trichalcogenides and the intercalation compounds LixNiPS3. Solid State Commun. 1978;28:327–32.CrossrefGoogle Scholar

  • [54]

    Granier W, Bernier P, Dohri M, Alizon J, Robert H. 19F nuclear relaxation in an ionic conductor: TlSn2F5. J Phyique Lett. 1981;42:301–4.CrossrefGoogle Scholar

  • [55]

    Kuhn A, Sreeraj P, Pöttgen R, Wiemhöfer H-D, Wilkening M, Heitjans P. Li ion diffusion in the anode material Li12Si7: ultrafast quasi-1D diffusion and two distinct fast 3D jump processes separately revealed by 7Li NMR relaxometry. J Am Chem Soc. 2011;133:11018–21.Google Scholar

  • [56]

    Chowdhury MT, Takekawa R, Lwai Y, Kuwata N, Kawamura J. The study of the lithium ion motion in B-alumina single crystal by NMR spectroscopy. Solid State Ionics. 2014;262:482–5.CrossrefGoogle Scholar

  • [57]

    Šalkus T, Kazakevičius E, Kežionis A, Dindune A, Kanepe Z, Ronis J, Emery J, et al. Peculiarities of ionic transport in Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics. J Phys: Condens Matter. 2009;21:185502.Google Scholar

  • [58]

    Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev. 1948;73:679–712.CrossrefGoogle Scholar

  • [59]

    Heitjans P, Kärger J. Diffusion in condensed matter. Berlin, Heidelberg: Springer-Verlag, 2005.Google Scholar

  • [60]

    Davis LJM, He XJ, Bain AD, Goward GR. Studies of lithium ion dynamics in paramagnetic cathode materials using 6Li 1D selective inversion methods. Solid State Nucl Magn Reson. 2012;42:26–32.CrossrefGoogle Scholar

  • [61]

    Kuhn A, Epp V, Schmidt G, Narayanan S, Thangadurai V, Wilkening M. Spin-alignment echo NMR: probing Li+ hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure. J Phys Condens Matter: An Inst Phys J. 2012;24:35901.CrossrefGoogle Scholar

  • [62]

    Wilkening M, Heitjans P. Extremely slow cation exchange processes in Li4SiO4 probed directly by two-time 7Li stimulated-echo nuclear magnetic resonance spectroscopy. J Phys: Condens Matter. 2006;18:9849.Google Scholar

  • [63]

    Wilkening M, Gebauer D, Heitjans P. Diffusion parameters in single-crystalline Li3N as probed by 6Li and 7Li spin-alignment echo NMR spectroscopy in comparison with results from 8Li β-radiation detected NMR. J Phys: Cond Mat. 2007;20:022201.Google Scholar

  • [64]

    Ruprecht B, Billetter H, Ruschewitz U, Wilkening M. Ultra-slow Li ion dynamics in Li2C2—on the similarities of results from 7Li spin-alignment echo NMR and impedance spectroscopy. J Phys: Cond Mat. 2010;22:245901.Google Scholar

  • [65]

    Bottke P, Rettenwander D, Schmidt W, Amthauer G, Wilkening M. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12. Chem Mater. 2015;27:6571–82.CrossrefGoogle Scholar

  • [66]

    Forse AC, Griffin JM, Merlet C, Carretero-Gonzalez J, Raji A-RO, Trease NM, Grey CP. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat Energy. 2017;2:16216.CrossrefGoogle Scholar

  • [67]

    Yates JR, Pickard CJ, Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys Rev B. 2007;76:293.Google Scholar

  • [68]

    Pickard CJ, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B. 2001;63:70.Google Scholar

  • [69]

    Mayo M, Griffith KJ, Pickard CJ, Morris AJ. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem Mater. 2016;28:2011–21.CrossrefGoogle Scholar

  • [70]

    Lynch CI. An overview of first-principles calculations of NMR parameters for paramagnetic materials. Mater Sci Technol. 2016;32:181–94.CrossrefGoogle Scholar

  • [71]

    Mali G, Rangus M, Sirisopanaporn C, Dominko R. Understanding 6Li MAS NMR spectra of Li2MSiO4 materials (M = Mn, Fe, Zn). Solid State Nucl Magn Reson. 2012;42:33–41.CrossrefGoogle Scholar

  • [72]

    Mali G, Sirisopanaporn C, Masquelier C, Hanzel D, Dominko R. Li2FeSiO4 polymorphs probed by 6Li MAS NMR and 57Fe Mössbauer spectroscopy. Chem Mater. 2011;23:2735–44.CrossrefGoogle Scholar

  • [73]

    Mali G, Meden A, Dominko R. 6Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. Chem Commun. 2010;46:3306–8.CrossrefGoogle Scholar

  • [74]

    Carlier D, Ménétrier M, Grey CP, Delmas C, and Ceder G. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B. 2003;67:1773.Google Scholar

  • [75]

    Kim J, Middlemiss DS, Chernova NA, Zhu BYX, Masquelier C, Grey CP. Linking local environments and hyperfine shifts: a combined experimental and theoretical 31P and 7Li solid-state NMR study of paramagnetic FeIII phosphates. J Am Chem Soc. 2010;132:16825–40.CrossrefGoogle Scholar

  • [76]

    Pigliapochi R, Pell AJ, Seymour ID, Grey CP, Ceresoli D, Kaupp M. DFT investigation of the effect of spin-orbit coupling on the NMR shifts in paramagnetic solids. Phys Rev B. 2017;95:286.Google Scholar

  • [77]

    Britton MM. MRI of chemical reactions and processes. Prog Nucl Magn Reson Spectrosc. 2017. DOI: CrossrefPubMedGoogle Scholar

  • [78]

    Krachkovskiy SA, Bazak JD, Werhun P, Balcom BJ, Halalay IC, Goward GR. Visualization of steady-state ionic concentration profiles formed in electrolytes during li-ion battery operation and determination of mass-transport properties by in situ magnetic resonance imaging. J Am Chem Soc. 2016;138:7992–9.CrossrefPubMedGoogle Scholar

  • [79]

    Romanenko K, Jin L, Howlett P, Forsyth M. In situ MRI of operating solid-state lithium metal cells based on ionic plastic crystal electrolytes. Chem Mater. 2016;28:2844–51.CrossrefGoogle Scholar

  • [80]

    Rieger PH. Electron spin resonance. Analysis and interpretation. Cambridge: Royal Soc. of Chemistry, 2007.Google Scholar

  • [81]

    Skrabal PM. Spektroskopie. Eine methodenübergreifende darstellung vom UV- bis zum NMR-bereich. Zürich: vdf Hochschulverlag AG, 2009.Google Scholar

  • [82]

    Weil JA, Bolton JR. Electron paramagnetic resonance. Elementary theory and practical applications, 2nd ed. New York: Wiley-Interscience, 2007.Google Scholar

  • [83]

    Harriman JE. Theoretical foundations of electron spin resonance. New York, u.a.: Academic Press; 1978.Google Scholar

  • [84]

    Poole CP, Farach HA, editor(s). Handbook of electron spin resonance. Data sources, computer technology, relaxation and ENDOR. Band 1. New York: AIP Press, 1994.Google Scholar

  • [85]

    Poole CP, editor(s). Handbook of electron spin resonance. Band 2. New York, NY: AIP Press, 1999.Google Scholar

  • [86]

    Sudant G, Baudrin E, Dunn B, Tarascon J-M. Synthesis and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. J Electrochem Soc. 2004;151:A666.CrossrefGoogle Scholar

  • [87]

    Van Nghia N, Long PD, Tan TA, Jafian S, Hung I-M. Electrochemical performance of a V2O5 cathode for a sodium ion battery. J Electron Mater. 2017;217:43.Google Scholar

  • [88]

    Gourier D, Tranchant A, Baffier N, Messina R. EPR study of electrochemical lithium intercalation in V2O5 cathodes. Electrochim Acta. 1992;37:2755–64.CrossrefGoogle Scholar

  • [89]

    Johnson L, Li C, Liu Z, Chen Y, Freunberger SA, Ashok PC, Praveen BB, et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat Chem. 2014;6:1091–9.PubMedCrossrefGoogle Scholar

  • [90]

    Petr A, Kataev V, Buchner B. First direct in situ EPR spectroelectrochemical evidence of the superoxide anion radical. J Phys Chem B. 2011;115:12036–9.PubMedCrossrefGoogle Scholar

  • [91]

    Wandt J, Marino C, Gasteiger HA, Jakes P, Eichel RA, Granwehr J. Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy & Environ Sci. 2015;8:1358–67.CrossrefGoogle Scholar

  • [92]

    Sathiya M, Leriche J-B, Salager E, Gourier D, Tarascon J-M, Vezin H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat Commun. 2015;6:6276.CrossrefPubMedGoogle Scholar

About the article

Published Online: 2018-07-11

Citation Information: Physical Sciences Reviews, Volume 3, Issue 10, 20170155, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0155.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in