Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

X-ray photoelectron spectroscopy study of the interaction of lithium with graphene

Lyubov G. Bulusheva
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander V. Okotrub
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lada V. Yashina / Juan J. Velasco-Velez
  • Department of heterogeneous reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, D-45470 Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitry Yu. Usachov
  • Department of Physics, Saint Petersburg State University, 7/9 Universitetskaya nab., St Petersburg, 199034, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Denis V. Vyalikh
  • Corresponding author
  • Departamento de Fisica de Materiales and CFM-MPC UPV/EHU, Donostia International Physics Center (DIPC), 20080 San Sebastian, Spain
  • IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-11 | DOI: https://doi.org/10.1515/psr-2018-0042

Abstract

Graphene-like nanostructures, solely or in combination with redox active compounds, are an important component of battery electrodes. Design of effective electrode materials requires a deep understanding of electrochemical reactions occurring at graphene surfaces. The methods of X-ray photoelectron spectroscopy (XPS) are very helpful in such research, providing the composition of studied samples and electronic state of individual elements. In this chapter, we demonstrate advantages of XPS for monitoring of chemical vapor deposition graphene growth and lithium penetration under graphene layers, disclosing of interactions with metals and interface states.

Keywords: CVD graphene; graphene/metal interface; nitrogen doping; batteries; X-ray photoelectron spectroscopy; synchrotron radiation

References

  • [1]

    Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.CrossrefPubMedGoogle Scholar

  • [2]

    An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL, III. The state of understanding of the lithium-ion-battery graphite solid electrolyte (SEI) and its relationship to formation cycling. Carbon. 2016;105:52–76.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    Lu XY, Jin XH, Sun J. Advances of graphene application in electrode materials for lithium ion batteries. Science China. 2015;58:1829–40.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    Dong Y, Wu Z-S, Ren W, Cheng H-M, Bao X. Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin. 2017;62:724–40.Web of ScienceCrossrefGoogle Scholar

  • [5]

    Oswald S, Mikhailova D, Scheiba F, Reichel P, Fiedler A, Ehrenberg H. XPS investigations of electrolyte/electrode interactions for various Li-ion battery materials. Anal Bioanal Chem. 2011;400:691–6.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [6]

    Leroy S, Blanchard F, Dedryvere R, Martinez H, Carre B, Lemordant D, Gonbeau D. Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf Interface Anal. 2005;37:773–81.CrossrefGoogle Scholar

  • [7]

    Oswald S, Nikolowski K, Ehrenberg H. XPS investigations of valence changes during cycling of LiCrMnO4-based cathodes in Li-ion batteries. Surf Interface Anal. 2010;42:916–21.CrossrefGoogle Scholar

  • [8]

    Hüfner S. Photoelectron spectroscopy, principles and applications. Berlin/Heidelberg/New York: Springer, 1996. ISBN: 3-540-41802-4.Google Scholar

  • [9]

    Varykhalov A, Sánchez-Barriga J, Shikin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett. 2008;101:157601.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [10]

    Grüneis A, Kummer K, Vyalikh DV. Dynamics of graphene growth on a metal surface: a time-dependent photoemission study. New J Phys. 2009;11:073050.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Grüneis A, Vyalikh DV. Tunable hybridization between electronic states of graphene and a metal surface. Phys Rev B. 2008;77:193401.Web of ScienceCrossrefGoogle Scholar

  • [12]

    Usachov DY, Fedorov AV, Vilkov OY, Petukhov AE, Rybkin AG, Ernst A, et al. Large-scale sublattice asymmetry in pure and boron-doped graphene. Nano Lett. 2016;16:4535.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [13]

    Kataev EY, Itkis DM, Fedorov AV, Senkovskiy BV, Usachov DY, Verbitskiy NI, et al. Oxygen reduction by lithiated graphene and graphene-based materials. ACS Nano. 2015;9:320–6.Web of ScienceCrossrefPubMedGoogle Scholar

  • [14]

    Blume R, Rosenthal D, Tessonnier J-P, Li H, Knop-Gericke A, Schlögl R. Characterizing graphitic carbon with X-ray photoelectron spectroscopy: a step-by-step approach. Chem Cat Chem. 2015;7:2871–81.Google Scholar

  • [15]

    Varykhalov A, Marchenko D, Sánchez-Barriga J, Scholz MR, Verberck B, Trauzettel B, Wehling TO, Cabone C, Rader O. Intact dirac cones at brocken sublattice symmetry: photoemission study of graphene on Ni and Co. Phys Rev X. 2012;2:041017.Google Scholar

  • [16]

    Lee CM, Yang S-H, Mun B-J, Ross PN, Jr. Surface structure of lithiated graphite by X-ray photoelectron diffraction. Surf Sci. 2001;477:126–32.CrossrefGoogle Scholar

  • [17]

    Wertheim GK, Th PM, Van Attekum M, Basu S. Electronic structure of lithium graphite. Solid State Commun. 1980;33:1127–30.CrossrefGoogle Scholar

  • [18]

    Schröder UA, Petrović M, Gerber T, Martínez-Galera AJ, Grånäs E, Arman MA, Herbig C, et al. Core level shifts of intercalated graphene. 2D Mater. 2017;4:015013.Web of ScienceGoogle Scholar

  • [19]

    Zhang L, Ye Y, Cheng D, Pan H, Zhu J. Intercalation of Li at graphene/Cu interface. J Phys Chem C. 2013;117:9259–65.CrossrefGoogle Scholar

  • [20]

    Oswald S. Binding energy referencing of XPS in alkali metal-based battery materials research (I): basic model investigations. App Surf Sci. 2015;351:492–503.CrossrefGoogle Scholar

  • [21]

    Lapteva LL, Fedoseeva YV, Gevko PN, Smirnov DA, Gusel'nikov AV, Bulusheva LG, Okotrub AV. X-ray spectroscopy study of lithiated graphite obtained by thermal deposition of lithium. J Struct Chem. 2017;58:1173–9.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Bulusheva LG, Kanygin MA, Arkhipov VE, Popov KM, Fedoseeva YV, Smirnov DA, Okotrub AV. In situ X-ray photoelectron spectroscopy study of lithium interaction with graphene and nitrogen-doped graphene films produced by chemical vapor deposition. J Phys Chem C. 2017;121:5108–14.Web of ScienceCrossrefGoogle Scholar

  • [23]

    Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization and its potential applications. ACS Catal. 2012;2:781–94.Web of ScienceCrossrefGoogle Scholar

  • [24]

    Itkis DM, Velasco-Velez JJ, Knop-Gericke A, Vyalikh A, Avdeev MV, Yashina LV. Probing operating electrochemical interfaces by photons and neutrons. Chem Electro Chem. 2015;2:1427–45.Google Scholar

  • [25]

    Stoltze P, Nørskov JK. Bridging the” pressure gap” between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys Rev Lett. 1985;55:2502.CrossrefGoogle Scholar

  • [26]

    Siegbahn H, Svensson S, Lundholm M. A new method for ESCA studies of liquid-phase samples. J Electron Spectr Rel Phenom. 1981;24:205–13.CrossrefGoogle Scholar

  • [27]

    Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M. A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Ins. 2002;73:3872–7.CrossrefGoogle Scholar

  • [28]

    Kaya S, Ogasawara H, Näslund LA , Forsell JO, Casalongue HS, Miller DJ, Nilsson A. Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Cat Tod. 2013;205:101–5.CrossrefGoogle Scholar

  • [29]

    Klyushin A, Arrigo R, Pfeifer V, Jones T, Velasco-Velez JJ , Knop-Gericke A. Catalyst electronic surface structure under gas and liquid environments, 2013.Google Scholar

  • [30]

    Kolmakov A, Dikin DA, Cote LJ, Huang J, Abyaneh MK, Amati M, Kiskinova M. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat Nanotechnol. 2011;6:651-7.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [31]

    Velasco-Velez JJ, Pfeifer V, Hävecker M, Schlögl R, Knop-Gericke A. Photoelectron spectroscopy at the graphene-liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew Chem Int Ed. 2015;54:14554–8CrossrefWeb of ScienceGoogle Scholar

  • [32]

    Velasco-Vélez JJ, Pfeifer V, Hävecker M, Wang R, Centeno A, Zurutuza A, Schlögl R, Knop-Gericke A. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: bridging the pressure gap. Rev Sci Instr. 2016;87:053121.CrossrefGoogle Scholar

About the article

Published Online: 2018-07-11


Citation Information: Physical Sciences Reviews, Volume 3, Issue 10, 20180042, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0042.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in