Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Electrodes: definitions and systematisation – a crystallographers view

Falk Meutzner
  • Corresponding author
  • Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg 09596, Germany
  • Samara Center for Theoretical Materials Science, Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matthias Zschornak
  • Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg 09596, Germany
  • Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melanie Nentwich / Damien Monti / Tilmann Leisegang
  • Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, Freiberg 09596, Germany
  • Samara Center for Theoretical Materials Science, Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/psr-2018-0043

Abstract

Electrodes are, in combination with electrolytes and the active, reacting materials the function-giving materials in electrochemical energy storage devices. They are responsible for the transfer of electrons and provide the surface at which the electrochemical reactions take place. Those electrochemical reactions span the potential difference which drives the battery. We present a crystallographically inspired systematisation of all electrodes found in electrochemical storages that comprise inert and reactive electrodes, subdivided in active and passive electrodes, and solvation, mixed crystal, and phase transition electrodes, respectively. After the description of all electrode types we present a concise summary of battery chemistries and the applied electrode types.

Keywords: crystallography; electrochemistry; electrode; anode; cathode; systematisation

References

  • [1]

    Wiberg N. Lehrbuch der Anorganischen Chemie, 102. stark umgearbeitete und verbesserte Auflage. Berlin: Walter de Gruyter & Co, 2007.Google Scholar

  • [2]

    Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J, Unwin PR, et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. Proc Nat Acad. 2012;109:11540–5. DOI: .CrossrefGoogle Scholar

  • [3]

    Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.CrossrefPubMedGoogle Scholar

  • [4]

    Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:63–71.CrossrefPubMedGoogle Scholar

  • [5]

    Sutton SJ, Lewin PL, Swingler SG. Review of global HVDC subsea cable projects and the application of sea electrodes. Int J Electr Power Energy Syst. 2017;87:121–35.CrossrefWeb of ScienceGoogle Scholar

  • [6]

    Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-Ion batteries. Chem Rev. 2014;114:11444–502.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [7]

    Reddy TD, editor(s). Linden’s handbook of batteries, 4th ed. McGraw Hill, 2011.Google Scholar

  • [8]

    Daniel C, Besenhard J. Handbook of battery materials, 2nd ed, vol. 1. Weihnheim: Wiley-VCH, 2011.Google Scholar

  • [9]

    Daniel C, Mohanty D, Li J, Wood DL. Cathode materials review. AIP Conf Proc. 2014;26–43 1597.Google Scholar

  • [10]

    Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Adv Phys. 2002;51:1–186.CrossrefGoogle Scholar

  • [11]

    Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271–301.PubMedCrossrefGoogle Scholar

  • [12]

    Meyer DC, Leisegang T. Electrochemical storage materials: from crystallography to engineering. DE GRUYTER OLDENBOURG Publishing House, 2018.Google Scholar

  • [13]

    Faraday M. Experimental researches in electricity. Philos Trans Royal Soc London. 1832;122:125–62.CrossrefGoogle Scholar

  • [14]

    Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55:6332–41.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012;11:19–29.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    Ponce de Leon C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.CrossrefGoogle Scholar

  • [17]

    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–79.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    Remick RJ, Ang PGP. Electrically rechargeable anionically active reduction – oxidation electrical storage-supply system. U.S. Patent No. 4,485,154 1984 27Nov.

  • [19]

    Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources. 2010;195:2431–42.CrossrefWeb of ScienceGoogle Scholar

  • [20]

    Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [21]

    Sun B, Skyllas-Kazakos M. Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim Acta. 1991;36:513–17.CrossrefGoogle Scholar

  • [22]

    Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment. Electrochim Acta. 1992;37:1253–60.CrossrefGoogle Scholar

  • [23]

    Sun B, Skyllas-Kazacos M. Chemical modification of graphite electrode materials for vanadium redox flow battery application – part II. Acid treatments. Electrochim Acta. 1992;37:2459–65.CrossrefGoogle Scholar

  • [24]

    Holze R. Anodes – materials for negative electrodes in electrochemical energy technology. AIP Conf Proc. 2014;1597:44–65.Google Scholar

  • [25]

    Powers RW, Breiter MW. The anodic dissolution and passivation of zinc in concentrated potassium hydroxide solutions. J Electrochem Soc. 1969;116:719–29.CrossrefGoogle Scholar

  • [26]

    Zendejas MA, Thomas JO. Conduction mechanisms in solid electrolytes: Na+ beta-alumina. Phys Scr. 1990;1990:235–44.Google Scholar

  • [27]

    Diggle JW, Despic AR, Bockris JM. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc. 1969;116:1503–14.CrossrefGoogle Scholar

  • [28]

    Palacin MR. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 2009;38:2565–75.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [29]

    Galloway RC. A sodium/beta-alumina/nickel chloride secondary cell. J Electrochem Soc. 1987;134:256–7.CrossrefGoogle Scholar

  • [30]

    Bones RJ, Teagle DA, Brooker SD, Cullen FL. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J Electrochem Soc. 1989;136:1274–7.CrossrefGoogle Scholar

  • [31]

    Hill RJ. The crystal structure of lead dioxides from the positive plate of the lead/acid battery. Mat Res Bull. 1982;17:769–84.CrossrefGoogle Scholar

  • [32]

    D’Antonio P, Santoro A. Powder neutron diffraction study of chemically prepared β-lead dioxide. Acta Cryst B. 1980;36:2394–7.CrossrefGoogle Scholar

  • [33]

    James RW, Wood WA. The crystal structure of barytes, celestine and anglesite. Proc Roy Soc A. 1925;109:598–20.CrossrefGoogle Scholar

  • [34]

    Cherkouk C, Nestler T. Cathodes – technological review. AIP Conf Proc. 2014;1597:134–45.Google Scholar

  • [35]

    Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science. 2017;356:415–8.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [36]

    Mulder FM, Weninger BMH, Middelkoop J, Ooms FGB, Schreuders H. Efficient electricity storage with a battolyser, an integrated Ni–fe battery and electrolyser. Energy Environ Sci. 2017;10:756–64.Web of ScienceCrossrefGoogle Scholar

  • [37]

    Bradwell DJ, Kim H, Sirk AHC, Sadoway DR. Magnesium–antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134:1895–7.CrossrefPubMedWeb of ScienceGoogle Scholar

  • [38]

    Guidotti RA. Thermal batteries: a technology review and future directions. Proc 27th Int SAMPE Tech Conf Abuquerque 1995;27:807–18.Google Scholar

  • [39]

    Egan DR, Ponce De León C, Wood RJK, Jones RL, Stokes KR, Walsh FC. Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources. 2013;236:293–310.CrossrefWeb of ScienceGoogle Scholar

  • [40]

    Narayanan SR, Surya Prakash GK, Manohar A, Yang B, Malkhandi S, Kindler A. Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics. 2012;216:105–9.CrossrefWeb of ScienceGoogle Scholar

  • [41]

    Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater. 1998;10:725–63.CrossrefGoogle Scholar

  • [42]

    Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renew Sustainable Energy Rev. 2009;13:2430–40.CrossrefWeb of ScienceGoogle Scholar

  • [43]

    Reddy AM, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059–62.Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2018-08-11


Financial support of the Federal Ministry of Education and Research (CryPhysConcept (03EK3029A) and R2RBattery (03SF0542A)) is gratefully acknowledged. DM acknowledges the EC for a H2020 MSCA-IF grant (contract number 743439).


Citation Information: Physical Sciences Reviews, Volume 3, Issue 10, 20180043, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0043.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in