Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications

Nirmal Kumar Das
  • Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saptarshi Mukherjee
  • Corresponding author
  • Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-10 | DOI: https://doi.org/10.1515/psr-2017-0081


Noble metal nanoclusters (NCs) are a new class of nanomaterials which are considered being a missing link between isolated metal atoms and metal nanoparticles (NPs). The sizes of the NCs are comparable to the Fermi wavelength of the conduction electrons, and this renders them to be luminescent in nature. They exhibit size-dependent fluorescence properties spanning almost the entire breath of the visible spectrum. Among all the noble metal NCs being explored, copper NCs (CuNCs) are the most rarely investigated primarily because of their propensity of getting oxidised. In this chapter, we have given a comprehensive understanding as to why these NCs are luminescent in nature. We have also given a detailed overview regarding the various templates used for the synthesis of these CuNCs along with the respective protocols being followed. The various instrumental techniques used to characterize these CuNCs are discussed which provides an in-depth understanding as to how these CuNCs can be properly examined. Finally, we have highlighted some of the most recent applications of these CuNCs which make them unique to serve as the next-generation fluorophores.

Graphical Abstract:

The Graphical Abstract highlights some of the key spectroscopic signatures of the CuNCs and their applications.

The Graphical Abstract highlights some of the key spectroscopic signatures of the CuNCs and their applications.

Keywords: luminescent nanoclusters; spectroscopic properties; synthetic protocols; templates; instrumentations; sensing; bio-imaging; nano-thermometry


  • [1]

    Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin, Germany: Springer, 1995.Google Scholar

  • [2]

    Bhattacharyya K, Mukherjee S. Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. Bull Chem Soc Jpn. 2018 3 15;91:447–54. DOI: .CrossrefGoogle Scholar

  • [3]

    Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev. 2007;107:4797–862.CrossrefPubMedGoogle Scholar

  • [4]

    Schmid G. Clusters and colloids-From theory to applications. Weinheim, Germany: VCH, 1994.Google Scholar

  • [5]

    Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem. 2007;58:409–13.PubMedCrossrefGoogle Scholar

  • [6]

    Haberland H. Clusters of atoms and molecules. Berlin, Germany: Springer, 1994.Google Scholar

  • [7]

    Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J Phys Chem B. 1998;102:10643–6.CrossrefGoogle Scholar

  • [8]

    Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117:8208–71.CrossrefPubMedGoogle Scholar

  • [9]

    Wallace WT, Whetten RL. Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc. 2002;124:7499–505.CrossrefGoogle Scholar

  • [10]

    Campbell CT, Parker SC, Starr DE. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science. 2002;298:811–4.PubMedCrossrefGoogle Scholar

  • [11]

    Link S, Beeby A, FitzGerald S, Sayed MAE, Schaaff TG, Whetten RL. Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B. 2002;106:3410–5.CrossrefGoogle Scholar

  • [12]

    Peyser LA, Lee TH, Dickson RM. Mechanism of Agn nanocluster photoproduction from silver oxide films. J Phys Chem B. 2002;106:7725–8.CrossrefGoogle Scholar

  • [13]

    Félix C, Sieber C, Harbich W, Buttet J, Rabin I, Schulze W, et al. Ag8 fluorescence in argon. Phys Rev Lett. 2001;86:2992.PubMedCrossrefGoogle Scholar

  • [14]

    Fedrigo S, Harbich W, Buttet J. Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices. J Chem Phys. 1993;99:5712–7.CrossrefGoogle Scholar

  • [15]

    Ishida Y, Corpuz RD, Yonezawa T. Matrix sputtering method: A novel physical approach for photoluminescent noble metal nanocluster. Acc Chem Res. 2017;50:2986–95.CrossrefGoogle Scholar

  • [16]

    Zheng J, Chen Z, Yu M, Liu J. Different sized luminescent gold nanoparticles. Nanoscale. 2012;4:4073–83.PubMedCrossrefGoogle Scholar

  • [17]

    Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev. 1972;B6:4370–9.Google Scholar

  • [18]

    March A. Electron theory of metals. Ann Phys. 1916;354:710–24.Google Scholar

  • [19]

    Khandelwal P, Poddar P. Fluorescent metal quantum clusters: an updated overview of the synthesis, properties, and biological applications. J Mater Chem B. 2017;5:9055–84.CrossrefGoogle Scholar

  • [20]

    Zheng J, Zhang CW, Dickson RM. Highly fluorescent, water-soluble, size tunable gold quantum dots. Phys Review Lett. 2004;93:077402.CrossrefGoogle Scholar

  • [21]

    Johnston RL. Atomic and molecular clusters. London: Taylor & Francis, 2002.Google Scholar

  • [22]

    Knight WD, Clemenger K, De Heer WA, Saunders WA, Chou MY, Cohen ML. Electronic shell structure and abundances of sodium clusters. Phys Review Lett. 1984;52:2141.CrossrefGoogle Scholar

  • [23]

    De Heer WA, Selby K, Kresin V, Masui J, Vollmer M, Chatelain A, et al. Collective dipole oscillations in small sodium clusters. Phys Review Lett. 1987;59:1805.CrossrefGoogle Scholar

  • [24]

    De Heer WA. The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys. 1993;65:611–76.CrossrefGoogle Scholar

  • [25]

    Kiejna A, Wojciechowski KF. Metal surface electron physics. Pergamon, United Kingdom 1996.Google Scholar

  • [26]

    Lang N, Kohn W. Theory of metal surfaces: charge density and surface energy. Phys Rev B. 1970;1:4555–68.CrossrefGoogle Scholar

  • [27]

    Ashcroft NW, Wood DM. Quantum size effects in the optical properties of small metallic particles. Phys Rev B. 1982;25:6255–74.CrossrefGoogle Scholar

  • [28]

    Chattoraj S, Bhattacharyya K. Fluorescent gold nanocluster inside a live breast cell: etching and higher uptake in cancer cell. J Phys Chem C. 2014;118:22339–46.CrossrefGoogle Scholar

  • [29]

    Chattoraj S, Amin MA, Bhattacharyya K. Cytochrome C-capped fluorescent gold nanoclusters: imaging of live cells and delivery of cytochrome C. ChemPhysChem. 2016;17:2088–95.CrossrefPubMedGoogle Scholar

  • [30]

    Chattoraj S, Amin MA, Jana B, Mohapatra S, Ghosh S, Bhattacharyya K. Selective killing of breast cancer cells by Doxorubicin-loaded fluorescent gold nanoclusters: confocal microscopy and FRET. ChemPhysChem. 2016;17:253–9.CrossrefPubMedGoogle Scholar

  • [31]

    Fedrigo S, Harbich W, Buttet J. Recent development in deciphering the structure of luminescent silver nanodots. J Chem Phys. 1993;99:5712–17.Google Scholar

  • [32]

    Lin C-AJ, Lee C-H, Hsieh J-T, Wang -H-H, Li JK, Shen J-L, et al. Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J Med Biol Eng. 2009;29:276–83.Google Scholar

  • [33]

    Anand U, Ghosh S, Mukherjee S. Toggling between blue- and red-emitting fluorescent silver nanoclusters. J Phys Chem Lett. 2012;3:3605–9.PubMedCrossrefGoogle Scholar

  • [34]

    Ghosh S, Das NK, Anand U, Mukherjee S. Photostable copper nanoclusters: compatible Förster resonance energy-transfer assays and a nanothermometer. J Phys Chem Lett. 2015;6:1293–8.CrossrefGoogle Scholar

  • [35]

    Das NK, Ghosh S, Priya A, Datta S, Mukherjee S. Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. J Phys Chem C. 2015;119:24657–64.CrossrefGoogle Scholar

  • [36]

    Ghosh S, Anand U, Mukherjee S. Luminescent silver nanoclusters acting as a label-free photoswitch in metal ion sensing. Anal Chem. 2014;86:3188–94.CrossrefPubMedGoogle Scholar

  • [37]

    Ghoshal A, Goswami U, Sahoo AK, Chattopadhyay A, Ghosh SS. Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-Nanocluster embedded nanoparticles in cancer theranostics. ACS Biomater Sci Eng. 2015;1:1256–66.CrossrefGoogle Scholar

  • [38]

    Leung FC-M, Tam A-Y-Y, Au VK-M, Li M-J, Yam V-W-W. Förster resonance energy transfer studies of luminescent gold nanoparticles functionalized with ruthenium(II) and rhenium(I) complexes: modulation via esterase hydrolysis. ACS Appl Mater Interfaces. 2014;6:6644–53.CrossrefPubMedGoogle Scholar

  • [39]

    Su Y, Qi L, Mubc X, Wang M. A fluorescent probe for sensing ferric ions in bean sprouts based on L-histidine-stabilized gold nanoclusters. Anal Methods. 2015;7:684–9.CrossrefGoogle Scholar

  • [40]

    Yao Q, Yuan X, Fung V, Yu Y, Leong DT, Jiang D, et al. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat Commun. 2017;8:927.PubMedCrossrefGoogle Scholar

  • [41]

    Fabris L, Antonello S, Armelao L, Donkers RL, Polo F, Toniolo C, et al. Gold nanoclusters protected by conformationally constrained peptides. J Am Chem Soc. 2005, 2006;128:326–36.Google Scholar

  • [42]

    Kundu S, Maheshwari V, Saraf RF. Photolytic metallization of Au nanoclusters and electrically conducting micrometer long nanostructures on a DNA scaffold. Langmuir. 2008;24:551–5.PubMedCrossrefGoogle Scholar

  • [43]

    Lin C-AJ, Yang T-Y, Lee C-H, Sherry HH, Sperling RA, Zanella M, et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano. 2009;3:395–401.CrossrefPubMedGoogle Scholar

  • [44]

    Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU. Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small. 2012;8:661–5.PubMedCrossrefGoogle Scholar

  • [45]

    Liu Y-Q, Zhang M, Yin B-C, Ye B-C. Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification. Anal Chem. 2012;84:5165–9.PubMedCrossrefGoogle Scholar

  • [46]

    Liu G, Feng D-Q, Chen T, Li D, Zheng W. DNA-templated formation of silver nanoclusters as a novel light-scattering sensor for label-free copper ions detection. J Material Chem. 2012;22:20885–8.CrossrefGoogle Scholar

  • [47]

    Ghoshal A, Goswami U, Raza A, Chattopadhyay A, Ghosh SS. Recombinant sFRP4 bound chitosan-alginate composite nanoparticles embedded with silver nanoclusters for Wnt/b-catenin targeting in cancer theranostics. RSC Adv. 2016;6:85763–72.CrossrefGoogle Scholar

  • [48]

    Sarkar S, Chakraborty I, Panwar MK, Pradeep T. Isolation and tandem mass spectrometric identification of a stable monolayer protected silver-palladium alloy cluster. J Phys Chem Lett. 2014;5:3757–62.PubMedCrossrefGoogle Scholar

  • [49]

    Shang L, Dörlich RM, Trouillet V, Bruns M, Nienhaus GU. Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res. 2012;5:531–42.CrossrefGoogle Scholar

  • [50]

    Zheng K, Setyawati M, Lim T-P, Leong DT, Xie J. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano. 2016;10:7934–42.PubMedCrossrefGoogle Scholar

  • [51]

    Kawasaki H, Kosaka Y, Myoujin Y, Narushima T, Yonezawa T, Arakawa R. Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem Commun. 2011;47:7740–2.CrossrefGoogle Scholar

  • [52]

    Das NK, Chakraborty S, Mukherjee M, Mukherjee S. Enhanced luminescent properties of photo-stable copper nanoclusters through formation of “Protein-Corona”-like assemblies. 2018: DOI: 10.1002/cphc.201800332.Google Scholar

  • [53]

    Guo Y, Cao F, Lei X, Mang L, Cheng S, Song J. Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale. 2016;8:4852–63.PubMedCrossrefGoogle Scholar

  • [54]

    Salzemann C, Lisiecki I, Brioude A, Urban J, Pileni M-P. Collections of copper nanocrystals characterized by different sizes and shapes: optical response of these nanoobjects. J Phys Chem B. 2004;108:13242–8.CrossrefGoogle Scholar

  • [55]

    Salzemann C, Brioude A, Pileni M-P. Tuning of copper nanocrystals optical properties with their shapes. J Phys Chem B. 2006;110:7208–12.PubMedCrossrefGoogle Scholar

  • [56]

    Salzemann C, Lisiecki I, Urban J, Pileni M-P. Anisotropic copper nanocrystals synthesized in a supersaturated medium: nanocrystal growth. Langmuir. 2004;20:11772–7.CrossrefGoogle Scholar

  • [57]

    Liu X, Astruc D. Atomically precise copper nanoclusters and their applications. Co-Ordination Chem Rev. 2018;359:112–26.CrossrefGoogle Scholar

  • [58]

    Wang Z, Chen B, Rogach AL. Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons. 2017;2:135–46.CrossrefGoogle Scholar

  • [59]

    Hu X, Liu T, Zhuang Y, Wang W, Li Y, Fan W, et al. Recent advances in the analytical applications of copper nanoclusters. Trends Anal Chem. 2016;77:66–75.CrossrefGoogle Scholar

  • [60]

    Qu X, Li Y, Li L, Wang Y, Liang J, Liang J. Fluorescent gold nanoclusters: synthesis and recent biological application. J Nanomater. 2015;2015:784097.Google Scholar

  • [61]

    Schaaff TG, Whetten RL. Controlled etching of Au: sRcluster compounds. J Phys Chem B. 1999;103:9394–6.CrossrefGoogle Scholar

  • [62]

    Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc. 2012;134:16662–70.CrossrefGoogle Scholar

  • [63]

    Rao TUB, Pradeep T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angewantde Chemie Int Edition. 2010;49:3925–9.CrossrefGoogle Scholar

  • [64]

    Jupally VR, Dass A. Synthesis of Au130(SR)50 and Au130-xAgx(SR)50 nanomolecules through core size conversion of larger metal clusters. Phys Chem Chem Phys. 2014;16:10473–9.PubMedCrossrefGoogle Scholar

  • [65]

    Wang B, Gui R, Jin H, He W, Wang Z. Red-emitting BSA-stabilized copper nanoclusters acted as a sensitive probe for fluorescence sensing and visual imaging detection of rutin. Talanta. 2018;178:1006–10.CrossrefPubMedGoogle Scholar

  • [66]

    Wang C, Wang C, Xu L, Cheng H, Lin Q, Zhang C. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale. 2014;6:1775–81.CrossrefPubMedGoogle Scholar

  • [67]

    Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pal SK. Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem. 2011;83:9676–80.CrossrefPubMedGoogle Scholar

  • [68]

    Gao Z, Su R, Qi W, Wang L, He Z. Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff. Sensors Actuators B. 2014;195:359–64.CrossrefGoogle Scholar

  • [69]

    Mu˜noz-Bustos C, Tirado-Guízar A, Paraguay-Delgado F, Pina-Luis G. Copper nanoclusters-coated BSA as a novel fluorescence sensor for sensitive and selective detection of mangiferin. Sensors Actuators B. 2017;244:922–7.CrossrefGoogle Scholar

  • [70]

    Zhao M, Chen A-Y, Huang D, Zhuo Y, Chai Y-Q, Yuan R. Cu nanoclusters: novel electrochemiluminescence emitters for bioanalysis. Anal Chem. 2016;88:11527–32.CrossrefPubMedGoogle Scholar

  • [71]

    Xiaoqing L, Ruiyi L, Zaijun L, Xiulan S, Zhouping W, Junkangc L. Fast synthesis of copper nanoclusters through the use of hydrogen peroxide additive and their application for the fluorescence detection of Hg2+ in water samples. New J Chem. 2015;39:5240–8.CrossrefGoogle Scholar

  • [72]

    Ruiyi L, Huiying W, Xiaoyan Z, Xiaoqing L, Xiulanb S, Zaijun L. D-Penicillamine and bovine serum albumin co-stabilized copper nanoclusters with remarkably enhanced fluorescence intensity and photostability for ultrasensitive detection of Ag+. New J Chem. 2016;40:732–9.CrossrefGoogle Scholar

  • [73]

    Gao F, Cai P, Yang W, Xue J, Gao L, Liu R, et al. Ultrasmall [64Cu]Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano. 2015;9:4976–86.CrossrefGoogle Scholar

  • [74]

    Ghosh R, Sahoo AK, Ghosh SS, Paul A, Chattopadhyay A. Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labelling. ACS Appl Mater Interfaces. 2014;6:3822–8.CrossrefGoogle Scholar

  • [75]

    Wang C, Shu S, Yao Y, Song Q. A fluorescent biosensor of lysozyme-stabilized copper nanoclusters for the selective detection of glucose. RSC Adv. 2015;5:101599–606.CrossrefGoogle Scholar

  • [76]

    Miao H, Zhong D, Zhoub Z, Yang X. Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with H2O2. Nanoscale. 2015;7:19066–72.CrossrefPubMedGoogle Scholar

  • [77]

    Zhao T, He X-Y, Li W-Y, Zhangab Y-K. Transferrin-directed preparation of red-emitting copper nanoclusters for targeted imaging of transferrin receptor over-expressed cancer cells. J Mater Chem B. 2015;3:2388–94.CrossrefGoogle Scholar

  • [78]

    Wang W, Leng F, Zhan L, Chang Y, Yang XX, Lana J, et al. One-step prepared fluorescent copper nanoclusters for reversible pH-sensing. Analyst. 2014;139:2990–3.PubMedCrossrefGoogle Scholar

  • [79]

    Huang H, Li H, Wang A-J, Zhong S-X, Fang K-M, Feng JJ. Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging. Analyst. 2014;139:6536–41.PubMedCrossrefGoogle Scholar

  • [80]

    Petty JT, Zheng J, Hud NV, Dickson RM. DNA-templated Ag nanocluster formation. J Am Chem Soc. 2004;126:5207–12.PubMedCrossrefGoogle Scholar

  • [81]

    Jia X, Li J, Han L, Ren J, Yang X, Wang E. DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano. 2012;6:3311–7.PubMedCrossrefGoogle Scholar

  • [82]

    Lan G-Y, Chen W-Y, Chang H-T. Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters. Analyst. 2011;136:3623–8.PubMedCrossrefGoogle Scholar

  • [83]

    Chen J, Liu J, Fang Z, Zeng L. Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem Commun. 2012;48:1057–9.CrossrefGoogle Scholar

  • [84]

    Jia X, Yang X, Li J, Li D, Wang D. Stable Cu nanoclusters: from an aggregation induced emission mechanism to biosensing and catalytic applications. Chem Commun. 2014;50:237–9.CrossrefGoogle Scholar

  • [85]

    Wei W, Lu Y, Chen W, Chen S. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc. 2011;133:2060–3.PubMedCrossrefGoogle Scholar

  • [86]

    Lin Y-J, Chen P-C, Yuan Z, Ma JY, Chang H-T. The isomeric effect of mercaptobenzoic acids on the preparation and fluorescence properties of copper nanoclusters. Chem Commun. 2015;51:11983–6.CrossrefGoogle Scholar

  • [87]

    Hu X, Mao X, Zhang X, Huang Y. One-step synthesis of orange fluorescent copper nanoclusters for sensitive and selective sensing of Al3+ ions in food samples. Sensors Actuators B. 2017;247:312–8.CrossrefGoogle Scholar

  • [88]

    Huang Y, Liu W, Feng H, Ye Y, Tang C, Ao H, et al. Luminescent nanoswitch based on organic-phase copper nanoclusters for sensitive detection of trace amount of water in organic solvents. Anal Chem. 2016;88:7429–34.PubMedCrossrefGoogle Scholar

  • [89]

    Jia X, Li Z, Wang E. Cu Nanoclusters with aggregation induced emission enhancement. Small. 2013;9:3873–9.PubMedCrossrefGoogle Scholar

  • [90]

    Huang H, Li H, Feng -J-J, Feng H, Wang A-J, Qian Z. One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing. Sensors Actuators B. 2016;241:292–7.Google Scholar

  • [91]

    Ye Y, Dong X, Jiang H, Wang X. An intracellular temperature nano probe based on biosynthesized fluorescent copper nanoclusters. J Mater Chem B. 2017;5:691–6.CrossrefGoogle Scholar

  • [92]

    Zhou T, Yao Q, Zhao T, Chen X. One-pot synthesis of fluorescent DHLA-stabilized Cu nanoclusters for the determination of H2O2. Talanta. 2015;141:80–5.CrossrefPubMedGoogle Scholar

  • [93]

    Guan W, Zhou W, Lu J, Lu C. Luminescent films for chemo and biosensing. Chem Soc Rev. 2015;44:6981–7009.PubMedCrossrefGoogle Scholar

  • [94]

    Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc. 2015;137:7843–50.CrossrefPubMedGoogle Scholar

  • [95]

    Hedley GJ, Ruseckas A, Samuel IDW. Light harvesting for organic photovoltaics. Chem Rev. 2017;117:796–837.CrossrefPubMedGoogle Scholar

  • [96]

    Xiao Z, Kerner RA, Zhao L, Tran NL, Lee KM, Koh T-W, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics. 2017;11:108–15.CrossrefGoogle Scholar

  • [97]

    Zhao L, Yeh Y-W, Tran NL, Wu F, Xiao Z, Kerner RA, et al. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano. 2017;11:3957–64.CrossrefPubMedGoogle Scholar

  • [98]

    Wang Z, Stephen Y, Kershaw V, Chen B, Yang X, Goswami N, et al. In situ fabrication of flexible, thermally stable, large-area, strongly luminescent copper nanocluster/polymer composite films. Chem Mater. 2017;29:10206–11.CrossrefGoogle Scholar

  • [99]

    Barthel MJ, Angeloni I, Petrelli A, Avellini T, Scarpellini A, Bertoni G, et al. Synthesis of highly fluorescent copper clusters using living polymer chains as combined reducing agents and ligands. ACS Nano. 2015;9:11886–97.CrossrefPubMedGoogle Scholar

  • [100]

    Ghosh R, Goswami U, Ghosh SS, Paul A, Chattopadhyay A. Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS Appl Mater Interfaces. 2015;7:209–22.PubMedCrossrefGoogle Scholar

  • [101]

    Ling Y, Wu JJ, Gao ZF, Li NB, Luo HQ. Enhanced emission of polyethyleneimine-coated copper nanoclusters and their solvent effect. J Phys Chem C. 2015;119:27173–7.CrossrefGoogle Scholar

  • [102]

    Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale. 2015;7:1549–65.CrossrefPubMedGoogle Scholar

  • [103]

    Chen P-C, Periasamy AP, Harroun SG, Wu W-P, Chang H-T. Photoluminescence sensing systems based on copper, gold and silver nanomaterials. Coord Chem Rev. 2016;320-321:129–38.CrossrefGoogle Scholar

  • [104]

    Ghosh S, Anand U, Mukherjee S. Kinetic aspects of enzyme-mediated evolution of highly luminescent meta silver nanoclusters. J Phys Chem C. 2015;119:10776–84.CrossrefGoogle Scholar

  • [105]

    O’ Connor DV, Phillips D. Time correlated single photon counting. New York: Academic Press, 1994.Google Scholar

  • [106]

    Lakowicz JR. Principles of fluorescence spectroscopy. USA: Springer, 2006.Google Scholar

  • [107]

    Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116:10346–413.CrossrefPubMedGoogle Scholar

  • [108]

    Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, et al. Isolation of smaller nanocrystal au molecules: robust quantum effects in optical spectra. J Phys Chem B. 1997;101:7885–91.CrossrefGoogle Scholar

  • [109]

    Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)x. J Am Chem Soc. 2008;130:5940–6.CrossrefGoogle Scholar

  • [110]

    Franz H, Michael K, Ronald CB, Brian TC. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991;63:1193–203.CrossrefGoogle Scholar

  • [111]

    Lu Y, Chen W. Application of mass spectrometry in the synthesis and characterization of metal nanoclusters. Anal Chem. 2015;87:10659–67.CrossrefPubMedGoogle Scholar

  • [112]

    Goswami U, Dutta A, Raza A, Kandimalla R, Kalita S, Ghosh SS, et al. Transferrin-copper nanocluster-doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl Mater Interfaces. 2018;10:3282–94.CrossrefPubMedGoogle Scholar

  • [113]

    Kong L, Chu X, Wang C, Zhou H, Wu Y, Liu L. D-Penicillamine-coated Cu/Ag alloy nanocluster superstructures: aggregation-induced emission and tunable photoluminescence from red to orange. Nanoscale. 2018;10:1631–40.CrossrefPubMedGoogle Scholar

  • [114]

    Cook AW, Jones ZR, Wu G, Scott SL, Hayton TW. An organometallic Cu20 nanocluster: synthesis, characterization, immobilization on silica, and “click” chemistry. J Am Chem Soc. 2018;140:394–400.CrossrefPubMedGoogle Scholar

  • [115]

    Diamond D. Principles of chemical and biological sensors. New York, USA: John Wiley & Sons, 1998.Google Scholar

  • [116]

    Sapsford KE, Bradburne C, Detehanty JB, Medintz IL. Sensors for detecting biological agent. Mater Today. 2008;11:38–49.CrossrefGoogle Scholar

  • [117]

    De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater. 2008;20:4225–41.CrossrefGoogle Scholar

  • [118]

    Thomas SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev. 2007;107:1339–86.CrossrefPubMedGoogle Scholar

  • [119]

    Ghosh SK, Rahman DS, Ali AL, Kalita A. Surface plasmon tunability and emission sensitivity of ultrasmall fluorescent copper nanoclusters. Plasmonics. 2013;8:1457–68.CrossrefGoogle Scholar

  • [120]

    Li D, Li B, Yang SI. A selective fluorescence turn-on sensing system for evaluation of Cu2+ polluted water based on ultra-fast formation of fluorescent copper nanoclusters. Anal Methods. 2015;7:2278–82.CrossrefGoogle Scholar

  • [121]

    Zhong YP, Zhu JJ, Wang QP, He Y, Ge YL, Song CW. Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper (II) ion. Microchimica Acta. 2015;182:909–15.CrossrefGoogle Scholar

  • [122]

    Cao H, Chen Z, Zheng H, Huang Y. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron. 2014;62:189–95.PubMedCrossrefGoogle Scholar

  • [123]

    Feng J, Ju Y, Liu J, Zhang H, Chen X. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor. Anal Chim Acta. 2015;854:153–60.PubMedCrossrefGoogle Scholar

  • [124]

    Cui M, Song G, Wang C, Song Q. Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium (VI). Microchimica Acta. 2015;182:1371–7.CrossrefGoogle Scholar

  • [125]

    Zhong Y, Wang Q, He Y, Ge Y, Song G. A novel fluorescence and naked eye sensor for iodide in urine based on the iodide induced oxidative etching and aggregation of Cu nanoclusters. Sensors Actuators B. 2015;209:147–53.CrossrefGoogle Scholar

  • [126]

    Li Z, Guo S, Lu C. A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement. Analyst. 2015;140:2719–25.PubMedCrossrefGoogle Scholar

  • [127]

    Wang CX, Cheng H, Huang YJ, Xu ZZ, Lin HH, Zhang C. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells. Analyst. 2015;140:5634–9.CrossrefGoogle Scholar

  • [128]

    Liao X, Rui L, Long X, Li Z. Ultrasensitive and wide-range pH sensor based on the BSA-capped Cu nanoclusters fabricated by fast synthesis through the use of hydrogen peroxide additive. RSC Adv. 2015;5:48835–41.CrossrefGoogle Scholar

  • [129]

    Liu J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. Trends Anal Chem. 2014;58:99–111.CrossrefGoogle Scholar

  • [130]

    Wang XP, Yin BC, Ye BC. A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs. RSC Adv. 2013;3:8633–6.CrossrefGoogle Scholar

  • [131]

    Zhang H, Lin Z, Su X. Label-free detection of exonuclease III by using dsDNA-templated copper nanoparticles as fluorescent probe. Talanta. 2015;131:59–63.CrossrefPubMedGoogle Scholar

  • [132]

    Bhamore JR, Jha S, Mungara AK, Singhal RK, Sonkeshariya D, Kailasa SK. One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosens Bioelectron. 2016;80:243–8.CrossrefPubMedGoogle Scholar

  • [133]

    Shi Y, Luo S, Ji X, Liu F, Chen X, Huang Y, et al. Synthesis of ultra-stable copper nanoclusters and their potential application as a reversible thermometer. Dalton Trans. 2017;46:14251–5.CrossrefPubMedGoogle Scholar

About the article

Nirmal Kumar Das

Dr. Nirmal Kumar Das did his M. Sc. from IIT Kanpur, Kanpur in 2012. Then, he joined as a PhD scholar in IISER Bhopal under the supervision of Professor Saptarshi Mukherjee. In November 2017, he successfully defended his PhD thesis. He is currently postdoctoral fellow in the same group. His research interests include spectroscopic investigation of organized assemblies, synthesis and spectroscopic applications of luminescent metal nanoclusters.

Saptarshi Mukherjee

Professor Saptarshi Mukherjee did his PhD under the supervision of Professor Kankan Bhattacharyya at IACS, Kolkata, and carried out his post-doctoral research with Professor H. Peter Lu at Bowling Green State University, Ohio, USA. He joined the Department of Chemistry, IISER Bhopal in December 2008. His research interests include luminescent metal nanoclusters, protein unfolding and refolding using ultrafast and single-molecule spectroscopy. He is presently as Professor in the Department of Chemistry, IISER Bhopal. He has received the INSA Young Scientist Medal in Chemical Sciences and is also a founding member of the Indian National Young Academy of Science.

Published Online: 2018-08-10

Citation Information: Physical Sciences Reviews, Volume 3, Issue 11, 20170081, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0081.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Srikrishna Pramanik, Laxmikanta Khamari, Somen Nandi, and Saptarshi Mukherjee
The Journal of Physical Chemistry C, 2019

Comments (0)

Please log in or register to comment.
Log in