[1]
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845–54.PubMedCrossrefGoogle Scholar
[2]
Linpo Y, Chen GZ. Redox electrode materials for supercapatteries. J Power Sources. 2016;326:604–12.CrossrefGoogle Scholar
[3]
Meyer DC, Leisegang T, Stöcker H, Zschornak M. Electrochemical storage materials: from crystallography to manufacturing technology. Berlin, Germany: De Gruyter Oldenbourg Publishing House, 2018.Google Scholar
[4]
Nernst W. Die elektrolytische Zersetzung wässriger Lösungen. Eur J Inorg Chem. 1897;30:1547–63.Google Scholar
[5]
Atkins PW, de Paula J. Physikalische Chemie, 4. vollständig überarbeitete Auflage ed. Weinheim, Germany: Wiley-VCH Verlag, 2006. ISBN: 978-3-527-31807-0.Google Scholar
[6]
Mortimer CE, Müller U. Chemie: Das Basiswissen der Chemie, 10. Auflage ed. Stuttgart, Germany: Georg Thieme Verlag, 2007. ISBN: 978-3134843095.Google Scholar
[7]
Hollemann AF, Wiberg N. Lehrbuch der Anorganischen Chemie, 102. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110177701.Google Scholar
[8]
Schmidt VM. Elektrochemische Verfahrenstechnik – Grundlagen, Reaktionskinetik, Prozessoptimierung. Weinheim, Germany: Wiley-VCH Verlag, 2003. ISBN: 978-3-527-29958-4.Google Scholar
[9]
Riedel E, Janiak C. Anorganische Chemie, 7. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110189032.Google Scholar
[10]
Gupta SV. Units of measurement: past, present and future. international system of units. In: Hull R, et al., editor(s). Springer series in materials science, Vol. 122. Heidelberg, Germany: Springer Science & Business Media, 2009. ISBN: 9783642007378.Google Scholar
[11]
Kuchling H. Taschenbuch der Physik, 11. Auflage ed. Thun and Frankfurt/Main, Germany: Verlag Harri Deutsch, 1988:635. ISBN: 3-8171-1020-0.Google Scholar
[12]
Bergmann L, Schaefer C, Kassing R. Lehrbuch der Experimentalphysik. Band 6: Festkörper, 2. Auflage ed. Berlin, Germany: Walter de Gruyter, 2005:361. ISBN: 3-11-017485-5.Google Scholar
[13]
Nernst W. Theoretical Chemistry from the Standpoint of Avogardro’s Rule & Thermodynamics, 4th ed. London,UK, New York, USA: The MacMillan Company, 1904.Google Scholar
[14]
von Helmholtz H. Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem. 1853;89:353–77.Google Scholar
[15]
Lippmann G. Beziehungen zwischen den Capillaren und elektrischen Erscheinungen. Ann Phys. 1873;225:546–61.CrossrefGoogle Scholar
[16]
Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J Phys Theor Appl. 1910;9:457–68.CrossrefGoogle Scholar
[17]
Chapman DL. LI. A contribution to the theory of electrocapillarity. Lond Edinb Dubl Phil Mag J Sci. 1913;25:475–81.CrossrefGoogle Scholar
[18]
Stern O. The theory of the electrolytic double-layer. Z Elektrochem. 1924;30:1014–20.Google Scholar
[19]
Bikerman J. Structure and capacity of electrical double layer. Lond Edinb Dubl Phil Mag J Sci. 1942;33:384–97.CrossrefGoogle Scholar
[20]
Freise V. Zur Theorie der diffusen Doppelschicht. Z Elektrochem Ber Bunsenges physik Chem. 1952;56:822–7.Google Scholar
[21]
Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947;41:441–501.CrossrefPubMedGoogle Scholar
[22]
Erdey-Gruz T, Volmer M. Zur Theorie der Wasserstoff Überspannung. Z Phys Chem. 1930;150:203–13.Google Scholar
[23]
Erdey-Gruz T, Volmer M. Zur Frage der elektrolytischen Metallüberspannung. Z Phys Chem. 1931;157:165–81.Google Scholar
[24]
Butler JAV. The mechanism of overvoltage and its relation to the combination of hydrogen atoms at metal electrodes. Trans Faraday Soc. 1932;28:379–82.CrossrefGoogle Scholar
[25]
Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140:1526–33.CrossrefGoogle Scholar
[26]
Frumkin A. Wasserstoffüberspannung und Struktur der Doppelschicht. Z Phys Chem. 1933;164:121–33.Google Scholar
[27]
Van Soestbergen M. Frumkin-Butler-Volmer theory and mass transfer in electrochemical cells. Russ J Electrochem. 2012;48:570–9.CrossrefGoogle Scholar
[28]
Latz A, Zausch J. Thermodynamic derivation of a Butler–Volmer model for intercalation in Li-ion batteries. Electrochim Acta. 2013;110:358–62.CrossrefGoogle Scholar
[29]
Rubi J, Kjelstrup S. Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations. J Phys Chem B. 2003;107:13471–7.CrossrefGoogle Scholar
[30]
Zeng Y, Smith RB, Bai P, Bazant MZ. Simple formula for Marcus–Hush–Chidsey kinetics. J Electroanalytical Chem. 2014;735:77–83.CrossrefGoogle Scholar
[31]
Lück J, Latz A. Theory of reactions at electrified interfaces. Phys Chem Chem Phys. 2016;18:17799–804.CrossrefPubMedGoogle Scholar
[32]
Fick A. Über Diffusion. Annalen der Physik 170.1 (1855): 59-86. Fick A. On liquid diffusion. Phil Mag Series. 1855;4:30–9 .Google Scholar
[33]
Hanzig J, Zschornak M, Mehner E, Hanzig F, Münchgesang W, Leisegang T, et al. The anisotropy of oxygen vacancy migration in SrTiO3. J Phy Cond Matter. 2016;28:225001.CrossrefGoogle Scholar
[34]
Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, et al. Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sources. 2014;267:700–5.CrossrefGoogle Scholar
[35]
Adams S, Prasado Rao R. High power lithium ion battery materials by computational design. Phys Status Solidi. 2011;208:1746–53.CrossrefGoogle Scholar
[36]
Pearson RG. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ. 1968;45:581–7.CrossrefGoogle Scholar
[37]
Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–31.PubMedCrossrefGoogle Scholar
[38]
Meutzner F, Münchgesang W, Kabanova NA, Zschornak M, Leisegang T, Blatov VA, et al. On the way to new possible na-ion conductors: the voronoi–dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chem Eur J. 2015;21:16601–8.CrossrefGoogle Scholar
[39]
Huggins RA. Chapter 9: Very Rapid Transport in Solids. In: Nowick AS, editor(s). Diffusion in solids: recent developments. New York, USA: Academic Press, 1975:445–86. ISBN: 0-12-522660-8.Google Scholar
[40]
Neumann F. In: Meyer OE, editor(s). Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Leipzig, Germany: B. G. Teubner-Verlag, 1885.Google Scholar
[41]
van der Veen A, Bhattacharya J, Belak AA. Understanding Li Diffusion in Li-Intercalation Compounds. Acc Chem Res. 2013;46:1216–25.CrossrefPubMedGoogle Scholar
[42]
Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016–21.CrossrefGoogle Scholar
[43]
Yakovenko AA, Wei ZW, Wriedt M, Li JR, Halder GJ, Zhou HC. Study of guest molecules in metal organic frameworks by powder X-ray diffraction: analysis of difference envelope density. Cryst Growth Des. 2014;14:5397–407.CrossrefGoogle Scholar
[44]
Zschornak M, Richter C, Nentwich M, Stöcker H, Gemming S, Meyer DC. Probing a crystal’s short‐range structure and local orbitals by Resonant X‐ray Diffraction methods. Crystal Res Technol. 2014;49:43–54CrossrefGoogle Scholar
[45]
Richter C, Zschornak M, Novikov D, Mehner E, Nentwich M, Hanzig J, Gorfman S, Meyer DC. Picometer polar atomic displacements in strontium titanate determined by resonant X-ray diffraction. Nat Comms. 2018;9:178.CrossrefGoogle Scholar
[46]
Wengert S, Nesper R, Andreoni W, Parrinello M. Ionic diffusion in a ternary superconductor: an ab initio molecular dynamics study. Phys Rev Lett. 1996;77:5083–5.CrossrefGoogle Scholar
[47]
Shi SQ, Lu P, Liu ZY, Qi Y, Hector LG, Li H, et al. Direct calculation of li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134:15476–87.PubMedCrossrefGoogle Scholar
[48]
Soto FA, Yan P, Engelhard MH, Marzouk A, Wang C, Xu G, et al. Tuning the solid electrolyte interphase for selective li- and na-ion storage in hard carbon. Adv Mater. 2017;29:1606860.CrossrefGoogle Scholar
[49]
Maiser E. Battery packaging – technology review. AIP Conf Proc. 2014;1597:204–8.Google Scholar
[50]
Korthauer R. Handbuch Lithium-Ionen-Batterien. Berlin/Heidelberg, Germany: Springer-Verlag, 2013. ISBN: 978-3-642-30652-5.Google Scholar
[51]
Johnson Matthey Battery Systems (former Axeon © 2012). Our Guide to Batteries. Rooksley, Milton Keynes, UK: Johnson Matthey, Precedent House. 2nd edition, 2018. accessed on Jan 26th.Google Scholar
[52]
Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334:928–35.CrossrefPubMedGoogle Scholar
[53]
Kraytsberg A, Ein-Eli Y. Higher, stronger, better? a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Ene Mat. 2012;2:922–39.CrossrefGoogle Scholar
[54]
Reddy TD, Linden D. Chapter 19 – 21: Nickel-Cadmium Batteries. Linden’s handbook of batteries, 4th ed. New York City, USA: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Google Scholar
[55]
Page KA, Soles CL, Runt J. Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells, Vol. 1096. Washington D.C., USA: American Chemical Society, 2012. ISBN: 9780841226319.Google Scholar
[56]
Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–R79.Google Scholar
[57]
Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Adv Funct Mater. 2013;23:970–86.CrossrefGoogle Scholar
[58]
Ponce De León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.CrossrefGoogle Scholar
[59]
Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.CrossrefPubMedGoogle Scholar
[60]
Reddy TD, Linden D. Chapter 16 & 17: Lead-Acid Batteries & Valve Regulated Lead-Acid Batteries. Linden’s Handbook of Batteries, 4th ed. New York City, Vereinigte Staaten: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Google Scholar
[61]
Beattie GW. Nernst’s theory of the concentration cell. Charleston SC, USA: BiblioBazaar, 2015. ISBN: 9781343047952.Google Scholar
[62]
Hahn T (Hrsg.). International tables for crystallography. Bd. A: Space-group symmetry. 5., rev. ed., repr. with corr. Dordrecht: Kluwer Academic Publishers, 2002. ISBN: 0-7923-6591-7.Google Scholar
Comments (0)