Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Fundamental principles of battery design

Matthias Zschornak
  • Corresponding author
  • TU Bergakademie Freiberg (TUBAF), Institute of Experimental Physics, Leipziger Straße 23, Freiberg 09596, Germany
  • Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Institute of Ion Beam Physics & Materials Research, Bautzner Landstraße 400, Dresden 01328, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Falk Meutzner
  • TU Bergakademie Freiberg (TUBAF), Institute of Experimental Physics, Leipziger Straße 23, Freiberg 09596, Germany
  • Samara National Research University (SNRU), Moskovskoye Shosse 34, Samara 443086, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jessica Lück
  • German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, Stuttgart 70569, Germany
  • Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89081 Ulm, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arnulf Latz
  • German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, Stuttgart 70569, Germany
  • Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89081 Ulm, Germany
  • University of Ulm, Institute of Electrochemistry, Albert-Einstein-Allee 47, 89081 Ulm, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tilmann Leisegang
  • TU Bergakademie Freiberg (TUBAF), Institute of Experimental Physics, Leipziger Straße 23, Freiberg 09596, Germany
  • Samara National Research University (SNRU), Moskovskoye Shosse 34, Samara 443086, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juliane Hanzig
  • TU Bergakademie Freiberg (TUBAF), Institute of Experimental Physics, Leipziger Straße 23, Freiberg 09596, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melanie Nentwich
  • TU Bergakademie Freiberg (TUBAF), Institute of Experimental Physics, Leipziger Straße 23, Freiberg 09596, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Zosel
  • Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg (KSI), Kurt-Schwabe-Str. 4, Waldheim 04736, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Perla B. Balbuena
  • Texas A&M University, Artie McFerrin Department of Chemical Engineering, 100 Spence St, TX 77843 College Station, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/psr-2017-0111

Abstract

With an increasing diversity of electrical energy sources, in particular with respect to the pool of renewable energies, and a growing complexity of electrical energy usage, the need for storage solutions to counterbalance the discrepancy of demand and offer is inevitable. In principle, a battery seems to be a simple device since it just requires three basic components – two electrodes and an electrolyte – in contact with each other. However, only the control of the interplay of these components as well as their dynamics, in particular the chemical reactions, can yield a high-performance system. Moreover, specific aspects such as production costs, weight, material composition and morphology, material criticality, and production conditions, among many others, need to be fulfilled at the same time. They present some of the countless challenges, which make battery design a long-lasting, effortful task. This chapter gives an introduction to the fundamental concepts of batteries. The principles are exemplified for the basic Daniell cell followed by a review of Nernst equation, electrified interface reactions, and ionic transport. The focus is addressed to crystalline materials. A comprehensive discussion of crystal chemical and crystal physical peculiarities reflects favourable and unfavourable local structural aspects from a crystallographic view as well as considerations with respect to electronic structure and bonding. A brief classification of battery types concludes the chapter.

Keywords: battery; electrochemistry; ionic transport; diffusion; migration; interface kinetics; crystallography

References

  • [1]

    Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845–54.PubMedCrossrefGoogle Scholar

  • [2]

    Linpo Y, Chen GZ. Redox electrode materials for supercapatteries. J Power Sources. 2016;326:604–12.CrossrefGoogle Scholar

  • [3]

    Meyer DC, Leisegang T, Stöcker H, Zschornak M. Electrochemical storage materials: from crystallography to manufacturing technology. Berlin, Germany: De Gruyter Oldenbourg Publishing House, 2018.Google Scholar

  • [4]

    Nernst W. Die elektrolytische Zersetzung wässriger Lösungen. Eur J Inorg Chem. 1897;30:1547–63.Google Scholar

  • [5]

    Atkins PW, de Paula J. Physikalische Chemie, 4. vollständig überarbeitete Auflage ed. Weinheim, Germany: Wiley-VCH Verlag, 2006. ISBN: 978-3-527-31807-0.Google Scholar

  • [6]

    Mortimer CE, Müller U. Chemie: Das Basiswissen der Chemie, 10. Auflage ed. Stuttgart, Germany: Georg Thieme Verlag, 2007. ISBN: 978-3134843095.Google Scholar

  • [7]

    Hollemann AF, Wiberg N. Lehrbuch der Anorganischen Chemie, 102. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110177701.Google Scholar

  • [8]

    Schmidt VM. Elektrochemische Verfahrenstechnik – Grundlagen, Reaktionskinetik, Prozessoptimierung. Weinheim, Germany: Wiley-VCH Verlag, 2003. ISBN: 978-3-527-29958-4.Google Scholar

  • [9]

    Riedel E, Janiak C. Anorganische Chemie, 7. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110189032.Google Scholar

  • [10]

    Gupta SV. Units of measurement: past, present and future. international system of units. In: Hull R, et al., editor(s). Springer series in materials science, Vol. 122. Heidelberg, Germany: Springer Science & Business Media, 2009. ISBN: 9783642007378.Google Scholar

  • [11]

    Kuchling H. Taschenbuch der Physik, 11. Auflage ed. Thun and Frankfurt/Main, Germany: Verlag Harri Deutsch, 1988:635. ISBN: 3-8171-1020-0.Google Scholar

  • [12]

    Bergmann L, Schaefer C, Kassing R. Lehrbuch der Experimentalphysik. Band 6: Festkörper, 2. Auflage ed. Berlin, Germany: Walter de Gruyter, 2005:361. ISBN: 3-11-017485-5.Google Scholar

  • [13]

    Nernst W. Theoretical Chemistry from the Standpoint of Avogardro’s Rule & Thermodynamics, 4th ed. London,UK, New York, USA: The MacMillan Company, 1904.Google Scholar

  • [14]

    von Helmholtz H. Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem. 1853;89:353–77.Google Scholar

  • [15]

    Lippmann G. Beziehungen zwischen den Capillaren und elektrischen Erscheinungen. Ann Phys. 1873;225:546–61.CrossrefGoogle Scholar

  • [16]

    Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J Phys Theor Appl. 1910;9:457–68.CrossrefGoogle Scholar

  • [17]

    Chapman DL. LI. A contribution to the theory of electrocapillarity. Lond Edinb Dubl Phil Mag J Sci. 1913;25:475–81.CrossrefGoogle Scholar

  • [18]

    Stern O. The theory of the electrolytic double-layer. Z Elektrochem. 1924;30:1014–20.Google Scholar

  • [19]

    Bikerman J. Structure and capacity of electrical double layer. Lond Edinb Dubl Phil Mag J Sci. 1942;33:384–97.CrossrefGoogle Scholar

  • [20]

    Freise V. Zur Theorie der diffusen Doppelschicht. Z Elektrochem Ber Bunsenges physik Chem. 1952;56:822–7.Google Scholar

  • [21]

    Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947;41:441–501.CrossrefPubMedGoogle Scholar

  • [22]

    Erdey-Gruz T, Volmer M. Zur Theorie der Wasserstoff Überspannung. Z Phys Chem. 1930;150:203–13.Google Scholar

  • [23]

    Erdey-Gruz T, Volmer M. Zur Frage der elektrolytischen Metallüberspannung. Z Phys Chem. 1931;157:165–81.Google Scholar

  • [24]

    Butler JAV. The mechanism of overvoltage and its relation to the combination of hydrogen atoms at metal electrodes. Trans Faraday Soc. 1932;28:379–82.CrossrefGoogle Scholar

  • [25]

    Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140:1526–33.CrossrefGoogle Scholar

  • [26]

    Frumkin A. Wasserstoffüberspannung und Struktur der Doppelschicht. Z Phys Chem. 1933;164:121–33.Google Scholar

  • [27]

    Van Soestbergen M. Frumkin-Butler-Volmer theory and mass transfer in electrochemical cells. Russ J Electrochem. 2012;48:570–9.CrossrefGoogle Scholar

  • [28]

    Latz A, Zausch J. Thermodynamic derivation of a Butler–Volmer model for intercalation in Li-ion batteries. Electrochim Acta. 2013;110:358–62.CrossrefGoogle Scholar

  • [29]

    Rubi J, Kjelstrup S. Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations. J Phys Chem B. 2003;107:13471–7.CrossrefGoogle Scholar

  • [30]

    Zeng Y, Smith RB, Bai P, Bazant MZ. Simple formula for Marcus–Hush–Chidsey kinetics. J Electroanalytical Chem. 2014;735:77–83.CrossrefGoogle Scholar

  • [31]

    Lück J, Latz A. Theory of reactions at electrified interfaces. Phys Chem Chem Phys. 2016;18:17799–804.CrossrefPubMedGoogle Scholar

  • [32]

    Fick A. Über Diffusion. Annalen der Physik 170.1 (1855): 59-86. Fick A. On liquid diffusion. Phil Mag Series. 1855;4:30–9 .Google Scholar

  • [33]

    Hanzig J, Zschornak M, Mehner E, Hanzig F, Münchgesang W, Leisegang T, et al. The anisotropy of oxygen vacancy migration in SrTiO3. J Phy Cond Matter. 2016;28:225001.CrossrefGoogle Scholar

  • [34]

    Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, et al. Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sources. 2014;267:700–5.CrossrefGoogle Scholar

  • [35]

    Adams S, Prasado Rao R. High power lithium ion battery materials by computational design. Phys Status Solidi. 2011;208:1746–53.CrossrefGoogle Scholar

  • [36]

    Pearson RG. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ. 1968;45:581–7.CrossrefGoogle Scholar

  • [37]

    Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–31.PubMedCrossrefGoogle Scholar

  • [38]

    Meutzner F, Münchgesang W, Kabanova NA, Zschornak M, Leisegang T, Blatov VA, et al. On the way to new possible na-ion conductors: the voronoi–dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chem Eur J. 2015;21:16601–8.CrossrefGoogle Scholar

  • [39]

    Huggins RA. Chapter 9: Very Rapid Transport in Solids. In: Nowick AS, editor(s). Diffusion in solids: recent developments. New York, USA: Academic Press, 1975:445–86. ISBN: 0-12-522660-8.Google Scholar

  • [40]

    Neumann F. In: Meyer OE, editor(s). Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Leipzig, Germany: B. G. Teubner-Verlag, 1885.Google Scholar

  • [41]

    van der Veen A, Bhattacharya J, Belak AA. Understanding Li Diffusion in Li-Intercalation Compounds. Acc Chem Res. 2013;46:1216–25.CrossrefPubMedGoogle Scholar

  • [42]

    Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016–21.CrossrefGoogle Scholar

  • [43]

    Yakovenko AA, Wei ZW, Wriedt M, Li JR, Halder GJ, Zhou HC. Study of guest molecules in metal organic frameworks by powder X-ray diffraction: analysis of difference envelope density. Cryst Growth Des. 2014;14:5397–407.CrossrefGoogle Scholar

  • [44]

    Zschornak M, Richter C, Nentwich M, Stöcker H, Gemming S, Meyer DC. Probing a crystal’s short‐range structure and local orbitals by Resonant X‐ray Diffraction methods. Crystal Res Technol. 2014;49:43–54CrossrefGoogle Scholar

  • [45]

    Richter C, Zschornak M, Novikov D, Mehner E, Nentwich M, Hanzig J, Gorfman S, Meyer DC. Picometer polar atomic displacements in strontium titanate determined by resonant X-ray diffraction. Nat Comms. 2018;9:178.CrossrefGoogle Scholar

  • [46]

    Wengert S, Nesper R, Andreoni W, Parrinello M. Ionic diffusion in a ternary superconductor: an ab initio molecular dynamics study. Phys Rev Lett. 1996;77:5083–5.CrossrefGoogle Scholar

  • [47]

    Shi SQ, Lu P, Liu ZY, Qi Y, Hector LG, Li H, et al. Direct calculation of li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134:15476–87.PubMedCrossrefGoogle Scholar

  • [48]

    Soto FA, Yan P, Engelhard MH, Marzouk A, Wang C, Xu G, et al. Tuning the solid electrolyte interphase for selective li- and na-ion storage in hard carbon. Adv Mater. 2017;29:1606860.CrossrefGoogle Scholar

  • [49]

    Maiser E. Battery packaging – technology review. AIP Conf Proc. 2014;1597:204–8.Google Scholar

  • [50]

    Korthauer R. Handbuch Lithium-Ionen-Batterien. Berlin/Heidelberg, Germany: Springer-Verlag, 2013. ISBN: 978-3-642-30652-5.Google Scholar

  • [51]

    Johnson Matthey Battery Systems (former Axeon © 2012). Our Guide to Batteries. Rooksley, Milton Keynes, UK: Johnson Matthey, Precedent House. 2nd edition, 2018. accessed on Jan 26th.Google Scholar

  • [52]

    Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334:928–35.CrossrefPubMedGoogle Scholar

  • [53]

    Kraytsberg A, Ein-Eli Y. Higher, stronger, better? a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Ene Mat. 2012;2:922–39.CrossrefGoogle Scholar

  • [54]

    Reddy TD, Linden D. Chapter 19 – 21: Nickel-Cadmium Batteries. Linden’s handbook of batteries, 4th ed. New York City, USA: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Google Scholar

  • [55]

    Page KA, Soles CL, Runt J. Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells, Vol. 1096. Washington D.C., USA: American Chemical Society, 2012. ISBN: 9780841226319.Google Scholar

  • [56]

    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–R79.Google Scholar

  • [57]

    Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Adv Funct Mater. 2013;23:970–86.CrossrefGoogle Scholar

  • [58]

    Ponce De León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.CrossrefGoogle Scholar

  • [59]

    Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.CrossrefPubMedGoogle Scholar

  • [60]

    Reddy TD, Linden D. Chapter 16 & 17: Lead-Acid Batteries & Valve Regulated Lead-Acid Batteries. Linden’s Handbook of Batteries, 4th ed. New York City, Vereinigte Staaten: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Google Scholar

  • [61]

    Beattie GW. Nernst’s theory of the concentration cell. Charleston SC, USA: BiblioBazaar, 2015. ISBN: 9781343047952.Google Scholar

  • [62]

    Hahn T (Hrsg.). International tables for crystallography. Bd. A: Space-group symmetry. 5., rev. ed., repr. with corr. Dordrecht: Kluwer Academic Publishers, 2002. ISBN: 0-7923-6591-7.Google Scholar

About the article

Published Online: 2018-08-11


Citation Information: Physical Sciences Reviews, Volume 3, Issue 11, 20170111, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0111.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in