Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Size and shape control of metal nanoparticles in millifluidic reactors

Samuel E. Lohse
  • Corresponding author
  • Physical and Environmental Sciences Program, Chemistry, Colorado Mesa University, Grand Junction, CO 81501, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/psr-2017-0120


Engineered metal nanoparticles (metal NPs) possess unique size -dependent optical and electronic properties that could enable new applications in biomedicine, energy generation, microelectronics, micro-optics, and catalysis. For metal NPs to make a mark in these fields, however, new synthetic strategies must be developed that permit NP synthesis on the kilogram scale, while maintaining precise control over NP physiochemical properties (size, shape, composition, and surface chemistry). Currently, NP batch syntheses produce product on the milligram scale and rely on synthetic strategies that are not readily amenable to scale-up. Flow reactor systems (including lab-on-a-chip devices) provide a synthesis platform that can circumvent many of the traditional limitations of batch-scale NP syntheses. These reactors provide more uniform reagent mixing, more uniform heat transfer, opportunities to interface in situ monitoring technology, and allow product yield to be scaled up simply by running multiple reactors in parallel. While many NP syntheses have been successfully transferred to microfluidic reactor systems, microfluidic reactor fabrication is time intensive and typically requires sophisticated lithography facilities. Consequently, millifluidic flow reactors (reactors with channel dimensions of 0.5–10.0 mm) are gaining popularity in NP synthesis. These millifluidic reactors provide many of the same synthetic advantages as microfluidic devices, but are simpler to construct, easier to reconfigure, and more straightforward to interface with in situ monitoring techniques. In this chapter, we will discuss the progress that has been made in developing millifluidic reactors for functionalized metal NP synthesis. First, we will review the basic wet-chemical strategies used to control metal NP size and shape in batch reactors. We will then survey some of the basic principles of millifluidic device design, construction, and operation. We will also discuss the potential for incorporating in situ monitoring for quality control during synthesis. We will conclude by highlighting some particularly relevant examples of millifluidic metal NP synthesis that have set new standards for metal NP size, shape, and surface chemistry control.

Graphical Abstract:

Keywords: nanomaterials; millifluidic synthesis; flow synthesis; nanoparticle; microreactor


  • [1]

    Daniel M-C, Astruc D. Gold nanoparticles nanoparticles: assembly, supramolecular chemistry, quantum size size -related properties, and applications toward biology, catalysis, and nanotechnology nanotechnology. Chem Rev. 2004;104:293–346.PubMedCrossrefGoogle Scholar

  • [2]

    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–79.CrossrefPubMedGoogle Scholar

  • [3]

    Sardar R, Funston AM, Mulvaney P, Murray RW. Gold nanoparticles: past, present, and future. Langmuir. 2009;25:13840–51.CrossrefPubMedGoogle Scholar

  • [4]

    Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27.CrossrefPubMedGoogle Scholar

  • [5]

    Cheong S, Watt JD, Tilley RD. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale. 2010;2:2045–53.PubMedCrossrefGoogle Scholar

  • [6]

    Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics. 2014;8:506–14.CrossrefGoogle Scholar

  • [7]

    Sherman D, Yodh JS, Albrecht SM, Nygard J, Krogstrup P, Marcus CM. Normal, superconducting and topological regimes of hybrid double quantum dots. Nat Nanotechnol. 2017;12:212–7.PubMedCrossrefGoogle Scholar

  • [8]

    Li X, Yang Z, Fu Y, Qiao L, Li D, Yue H, et al. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery. ACS Nano. 2015;9:1858–67.CrossrefGoogle Scholar

  • [9]

    Tesla spurs demand for lithium chemicals. Chem Eng News. 2018;94:10.Google Scholar

  • [10]

    Green nanotechnology challenges and opportunities. ACS Green Chemistry Institute White Paper, 2011.Google Scholar

  • [11]

    Krishna KS, Li Y, Li S, Kumar CS. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev. 2013;65:1470–95.CrossrefPubMedGoogle Scholar

  • [12]

    Hutchison JE. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology nanotechnology. ACS Nano. 2008;2:395–402.PubMedCrossrefGoogle Scholar

  • [13]

    Gilbertson LM, Zimmerman JB, Plata DL, Hutchison JE, Anastas PT. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry. Chem Soc Rev. 2015;44:5758–77.CrossrefPubMedGoogle Scholar

  • [14]

    Marre S, Jensen KF. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev. 2010;39:1183–202.CrossrefPubMedGoogle Scholar

  • [15]

    Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012;7:623–9.CrossrefPubMedGoogle Scholar

  • [16]

    Elvira KS, Solvas CI, Wootton RC, deMello AJ. The past, present and potential for microfluidic reactor reactor technology in chemical synthesis. Nat Chem. 2013;5:905–15.CrossrefPubMedGoogle Scholar

  • [17]

    Wiles C, Watts P. Continuous flow reactors flow reactors: a perspective. Green Chem. 2012;14:38–54.CrossrefGoogle Scholar

  • [18]

    Hartman RL, McMullen JP, Jensen KF. Deciding whether to go with the flow: evaluating the merits of flow reactors flow reactors for synthesis. Angewandte Chemie Int Ed. 2011;50:7502–19.CrossrefGoogle Scholar

  • [19]

    Wegner J, Ceylan S, Kirschning A. Ten key issues in modern flow chemistry. Chem Commun. 2011;47:4583–92.CrossrefGoogle Scholar

  • [20]

    Chan EM, Xu C, Mao AW, Han G, Owen JS, Cohen BE, et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 2010;10:1874–85.CrossrefPubMedGoogle Scholar

  • [21]

    Tsukahara T, Mawatari K, Kitamori T. Integrated extended-nano chemical systems on a chip. Chem Soc Rev. 2010;39:1000–13.CrossrefPubMedGoogle Scholar

  • [22]

    Song Y, Hormes J, Kumar CS. Microfluidic synthesis of nanomaterials. Small. 2008;4:698–711.PubMedCrossrefGoogle Scholar

  • [23]

    Song H, Chen DL, Ismagilov RF. Reactions in droplets in microfluidic channels. Angewandte Chemie Int Ed. 2006;45:7336–56.CrossrefGoogle Scholar

  • [24]

    Cabeza VS, Kuhn S, Kulkarni AA, Jensen KF. Size-controlled flow synthesis of gold nanoparticles using a segmented flow segmented flow microfluidic platform. Langmuir. 2012;28:7007–13.PubMedCrossrefGoogle Scholar

  • [25]

    Chan EM, Mathies RA, Alivasatos AP. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett. 2003;3:199–201.CrossrefGoogle Scholar

  • [26]

    Duraiswamy S, Khan SA. Droplet-based microfluidic synthesis of anisotropic metal nanocrystals. Small. 2009;5:2828–34.PubMedCrossrefGoogle Scholar

  • [27]

    Watt J, Hance BG, Anderson RS, Huber DL. Effect of seed age on gold nanorod formation: a microfluidic, real-time investigation. Chem Mater. 2015;27:6442–9.CrossrefGoogle Scholar

  • [28]

    Sebastian V, Basak S, Jensen KF. Continuous synthesis of palladium nanorods in oxidative segmented flow. Aiche J. 2015;62:373–80.Google Scholar

  • [29]

    Feng VZ, Edelman KR, Swanson BP. Student-fabricated microfluidic devices as flow reactors flow reactors for organic and inorganic synthesis. J Chem Educ. 2015;92:723–7.CrossrefGoogle Scholar

  • [30]

    Edel JB, Fortt R, deMello JC, deMello AJ. Microfluidic routes to the controlled production of nanoparticles. Chem Commun. 2002;0:1136–7.Google Scholar

  • [31]

    Dong B, Hadinoto K. Direct comparison between millifluidic and bulk-mixing platform in the synthesis of amorphous drug-polysaccharide nanoparticle complex. Int J Pharm. 2017;523:42–51.CrossrefPubMedGoogle Scholar

  • [32]

    Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L. Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab on Chip. 2012;12:3267–71.CrossrefGoogle Scholar

  • [33]

    Kohler JM, Li S, Knauer A. Why is micro segmented flow segmented flow particularly promising for the synthesis of nanomaterials? Chem Eng Technol. 2013;36:887–99.CrossrefGoogle Scholar

  • [34]

    Ostrowski AD, Chan EM, Gargas DJ, Katz EM, Han G, Schuck PJ, et al. Controlled synthesis and single-particle imaging of bright, sub 10-nm lanthanide-doped upconverting nanocrystals. ACS Nano. 2012;6:2686–92.CrossrefPubMedGoogle Scholar

  • [35]

    Levy ES, Tajon CA, Bischoff TS, Iafrati J, Fernandez-Bravo A, Garfield DJ, et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano. 2016;10:8423–33.CrossrefPubMedGoogle Scholar

  • [36]

    Dolomite microfluidic reactor chips. www.dolomitemicrofluidics.com. Accessed: 19 Jan 2018.

  • [37]

    Elliott EW, Haben PM, Hutchison JE. Subnanometer control of mean core size during mesofluidic synthesis of small (Dcore < 10 nm) water-soluble, ligand-stabilized gold nanoparticles. Langmuir. 2015;31:11886–94.CrossrefGoogle Scholar

  • [38]

    Zhang L, Niu G, Lu N, Wang J, Tong L, Wang L, et al. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano Lett. 2014;14:6626–31.CrossrefPubMedGoogle Scholar

  • [39]

    McKenzie LC, Haben PM, Kevan SD, Hutchison JE. Determining nanoparticle size in real time by small-angle X-ray scattering in a microscale flow system. J Phys Chem C. 2010;114:22055–63.CrossrefGoogle Scholar

  • [40]

    SciFinder Search. Nanoparticle Millifluidic Synthesis. 20 Jan 2018.Google Scholar

  • [41]

    Elliott EW, Ginsburg AL, Kennedy ZC, Feng Z, Hutchison JE. Single-step synthesis of small azide-functionalized gold nanoparticles: versatile, water-dispersible reagents for click chemistry. Langmuir. 2017;33:5796–802.CrossrefPubMedGoogle Scholar

  • [42]

    Shalom D, Wootlon R, Winkle RF, Cottam BF, Vilar R, deMello AJ. Synthesis of thiol functionalized gold nanoparticles using a continuous microfluidic reactor. Materials Letters. 2007;61:1146–50..CrossrefGoogle Scholar

  • [43]

    Lohse SE, Eller JR, Sivapalan ST, Plews MR, Murphy CJ. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano. 2013;7:4135–50.CrossrefPubMedGoogle Scholar

  • [44]

    Santana JS, Koczkur KM, Skrabalak SE. Synthesis of Core@Shell nanostructures in a continuous flow droplet reactor reactor: controlling structure through relative flow rates. Langmuir. 2017;33:6054–61.CrossrefGoogle Scholar

  • [45]

    Dahl JA, Maddux BLS, Hutchison JE. Toward greener nanosynthesis. Chem Rev. 2007;107:2228–69.CrossrefPubMedGoogle Scholar

  • [46]

    Tavakkoli M, Kallio T, Reynaud O, Nasibulin AG, Johans C, Sainio J, et al. Single-shell carbon-encapsulated iron nanoparticles: synthesis and electrocatalytic activity for hydrogen evolution reaction. Angewandte Chemie Int Ed. 2015;127:4618–21.CrossrefGoogle Scholar

  • [47]

    Xia X, Figueroa-Cosme L, Tao J, Hsin-Chieh P, Niu G, Zhu Y, et al. Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. J Am Chem Soc. 2014;136:10878–81.CrossrefPubMedGoogle Scholar

  • [48]

    Grass RN, Athanassiou EK, Stark WJ. Covalently functionalized cobalt nanoparticles nanoparticles as a platform for magnetic separations in organic synthesis. Angewandte Chemie Int Ed. 2007;46:4909–12.CrossrefGoogle Scholar

  • [49]

    Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501.PubMedCrossrefGoogle Scholar

  • [50]

    Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–9.PubMedCrossrefGoogle Scholar

  • [51]

    Ortiz A, Skrabalak SE. On the dual roles of ligands in the synthesis of colloidal metal nanostructures. Langmuir. 2014;30:6649–59.CrossrefPubMedGoogle Scholar

  • [52]

    Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater. 2004;16:3633–40.CrossrefGoogle Scholar

  • [53]

    Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004;126:8648–9.CrossrefPubMedGoogle Scholar

  • [54]

    Personick ML, Mirkin CA. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J Am Chem Soc. 2013;135:18238–47.CrossrefPubMedGoogle Scholar

  • [55]

    Lohse SE, Murphy CJ. The quest for shape control: a history of gold nanorod synthesis. Chem Mater. 2013;25:1250–61.CrossrefGoogle Scholar

  • [56]

    Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals with different shapes. 2006;35:209–17.Google Scholar

  • [57]

    Hulteen JC, Martin CR. A general template-based method for the preparation of nanomaterials. J Material Chem. 1997;7:1075–87.CrossrefGoogle Scholar

  • [58]

    Wagner RS, Ellis WC. Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett. 1964;4:89–90.CrossrefGoogle Scholar

  • [59]

    Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev. 2008;37:1783–91.PubMedCrossrefGoogle Scholar

  • [60]

    Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures: the case palladium. Adv Mat. 2007;19:3385–91.CrossrefGoogle Scholar

  • [61]

    DeSantis CJ, Skrabalak SE. Core values: elucidating the role of seed structure in the synthesis of symmetrically branched nanocrystals. J Am Chem Soc. 2013;135:10–3.PubMedCrossrefGoogle Scholar

  • [62]

    Chen J, Herricks T, Geissler M, Xia Y. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J Am Chem Soc. 2004;126:10584–855.Google Scholar

  • [63]

    Wiley B, Sun Y, Xia Y. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir. 2005;21:8077–80.PubMedCrossrefGoogle Scholar

  • [64]

    Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie Int Ed. 2009;48:60–103.CrossrefGoogle Scholar

  • [65]

    Kim F, Song JH, Yang P. Photochemical synthesis of gold nanorods. J Am Chem Soc. 2002;124:14316–7.CrossrefPubMedGoogle Scholar

  • [66]

    LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72:4847–54.CrossrefGoogle Scholar

  • [67]

    LaMer VK. Nucleation in phase transitions. Ind Eng Chem. 1952;44:1270–7.CrossrefGoogle Scholar

  • [68]

    Polte J. Fundamental growth principles of colloidal metal nanoparticles -a new perspective. Crystal Eng Commun. 2015;17:6809–30.CrossrefGoogle Scholar

  • [69]

    Turkevich J, Stevenson PC, Hilier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Farraday Soc. 1951;11:55–75.CrossrefGoogle Scholar

  • [70]

    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110:15700–7.CrossrefPubMedGoogle Scholar

  • [71]

    Vigderman L, Zubarev ER. High-yield synthesis of gold nanorods with a longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater. 2013;25:1450–7.CrossrefGoogle Scholar

  • [72]

    Parker JF, Fields-Zinna CA, Murray RW. The story of a monodisperse gold nanoparticle: au25-L18. Acc Chem Res. 2010;43:1289–96.PubMedCrossrefGoogle Scholar

  • [73]

    Hostetler MJ, Templeton AC, Murray RW. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir. 1999;15:3782–9.CrossrefGoogle Scholar

  • [74]

    Woehrle GH, Brown LO, Hutchison JE. Thiol-functionalized, 1.5 nm gold nanoparticles nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. J Am Chem Soc. 2005;127:2172–83.PubMedCrossrefGoogle Scholar

  • [75]

    DeSantis CJ, Peverly AA, Peters DG, Skrabalak SE. Octopods versus concave nanocrystals: control of morphology by manipulating the kinetics of seeded growth via co-reduction. Nano Lett. 2011;11:2164–8.PubMedCrossrefGoogle Scholar

  • [76]

    Xia Y, Xia X, Peng H-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J Am Chem Soc. 2015;137:7947–66.PubMedCrossrefGoogle Scholar

  • [77]

    O’Brien MN, Jones MR, Brown KA, Mirkin CA. Universal noble metal nanoparticle seeds realized through the iterative reductive growth and oxidative dissolution reactions. J Am Chem Soc. 2014;136:7603–6.PubMedCrossrefGoogle Scholar

  • [78]

    Burrows ND, Harvey S, Idesis FA, Murphy CJ. Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir. 2016;33:1891–907.PubMedGoogle Scholar

  • [79]

    Lohse SE, Dahl JA, Hutchison JE. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte slats as ligand precursors. Langmuir. 2010;26:7504–11.CrossrefGoogle Scholar

  • [80]

    Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir. 1998;14:17–30.CrossrefGoogle Scholar

  • [81]

    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun. 1994;0:801–2.CrossrefGoogle Scholar

  • [82]

    Park J-W, Shumaker-Parry JS. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization. ACS Nano. 2015;9:1665–82.PubMedCrossrefGoogle Scholar

  • [83]

    Park J-W, Shumaker-Parry JS. Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc. 2014;136:1907–21.CrossrefGoogle Scholar

  • [84]

    Biswas S, Miller JT, Li Y, Nandakumar K, Kumar CS. Developing a millifluidic platform for the synthesis of ultrasmall nanoclusters: ultrasmall copper nanoclusters as a case study. Small. 2012;8:688–98.CrossrefGoogle Scholar

  • [85]

    Hoefelmeyer JD, Niesz K, Somorjai GA, Tilley D. Radial anisotropic growth of rhodium nanoparticles. Nano Lett. 2005;5:435–8.PubMedCrossrefGoogle Scholar

  • [86]

    Xie S, Zhang H, Lu N, Jin M, Wang J, Kim MJ, et al. Synthesis of rhodium concave tetrahedrons by collectively manipulating the reduction kinetics, facet-selective capping, and surface diffusion. Nano Lett. 2013;13:6262–8.CrossrefPubMedGoogle Scholar

  • [87]

    Park S-J, Kim S, Lee S, Khim ZG, Char K, Hyeon T. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc. 2000;122:8581–2.CrossrefGoogle Scholar

  • [88]

    Orendorff CJ, Murphy CJ. Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B. 2006;110:3990–4.PubMedCrossrefGoogle Scholar

  • [89]

    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev. 2005;249:1870–901.CrossrefGoogle Scholar

  • [90]

    Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.CrossrefGoogle Scholar

  • [91]

    Jana NR. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small. 2005;1:875–82.PubMedCrossrefGoogle Scholar

  • [92]

    Wang Y, Xie S, Liu J, Park J, Huang CZ, Xia Y. Shape-controlled synthesis of palladium nanocrystals: a mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett. 2013;13:2276–81.CrossrefPubMedGoogle Scholar

  • [93]

    Abadeer NS, Brennan MR, Wilson WL, Murphy CJ. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica coated gold nanorods. ACS Nano. 2014;8:8392–406.CrossrefPubMedGoogle Scholar

  • [94]

    DeSantis CJ, Sue AC, Bower MM, Skrabalak SE. Seed-mediated co-reduction: a versatile route to architecturally controlled bimetallic nanostructures. ACS Nano. 2012;6:2617–28.PubMedCrossrefGoogle Scholar

  • [95]

    Li Y, Sanampudi A, Reddy VR, Biswas S, Nandkumar K, Yemane D, et al. Size evolution of gold nanoparticles in a millifluidic millifluidic reactor reactor. Chem Phys Phys Chem. 2012;13:177–82.CrossrefGoogle Scholar

  • [96]

    Lin XZ, Terepka AD, Yang H. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett. 2004;4:2227–32.CrossrefGoogle Scholar

  • [97]

    UNIQSIS: Accessible flow chemistry. www.uniqsyis.com. Accessed: 19 Jan 2018.

  • [98]

    Maguire P, Rutherford D, Macias-Montero M, Mahony C, Kelsey C, Tweedie M, et al. Continuous in-flight synthesis for on-demand delivery of ligand-free colloidal gold nanoparticles. Nano Lett. 2017;17:1336–43.PubMedCrossrefGoogle Scholar

  • [99]

    Wan Zhen, Luan Weiling, Tu Shan-Tung, et al. Size controlled synthesis of blue-emmitting core/shell nanocrystals via microreaction. J Phys Chem C. 2011;115:1569–75. DOI: .CrossrefGoogle Scholar

  • [100]

    Jun H, Fabienne T, Florent T, Coulon P-E, Nicolas M, Olivier S. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels. Langmuir. 2012;28:15966–74.PubMedCrossrefGoogle Scholar

  • [101]

    Jongen N, Donnet M, Bowen P, Lemaitre J, Hofman H, Schenk R, et al. Development of a continuous segmented flow tubular reactor reactor and the Scale-out concept- In search of perfect powders. Chem Eng Technol. 2003;26:303–5.CrossrefGoogle Scholar

  • [102]

    Lucchini MA, Testino A, Ludwig C, Kambolis A, El-Kazzi E, Cervellino A, et al. Continuous synthesis of nickel nanopowders: characterization, process optimization, and catalytic properties. Appl Catalysis B: Environ. 2014;156:404–15.Google Scholar

  • [103]

    Quinsat JE, Testino A, Pin S, Huthwelker T, Nuesch FA, Bowen P, et al. Continuous production of tailored silver nanoparticles by polyol synthesis and reaction yield measured by X-ray absorption spectroscopy: toward a growth mechanism. J Phys Chem C. 2014;118:11093–103.CrossrefGoogle Scholar

  • [104]

    Testino A, Pilger F, Lucchini MA, Quinsat JE, Stahli C, Bowen P. Continuous polyol synthesis of metal and metal oxide nanoparticles using a segmented flow segmented flow tubular reactor (SFTR). Molecules. 2015;20:10566–81.PubMedCrossrefGoogle Scholar

  • [105]

    Knauer A, Csaki A, Moller F, Huhn C, Fritzsche W, Kohler TM. Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties. J Phys Chem C. 2012;116:9251–8.CrossrefGoogle Scholar

  • [106]

    Haiss W, Thanh NT, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem. 2007;79:4215–21.PubMedCrossrefGoogle Scholar

  • [107]

    Li T, Sensei AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116:11128–80.PubMedCrossrefGoogle Scholar

  • [108]

    Jug K, Zimmerman B. Structure and stability of small copper clusters. J Chem Phys. 2002;116:4497.CrossrefGoogle Scholar

  • [109]

    Nikam AV, Kulkarni AA, Prasad BL. Microwave-assisted batch and continuous flow synthesis of palladium supported on magnetic nickel nanocrystals and their evaluation as reusable catalyst. Crystal Growth Design. 2017;17:5163–9.CrossrefGoogle Scholar

  • [110]

    McKenzie L. Mechanistic insights on nanoparticle formation: investigation of reaction pathways and development of controlled synthesis for triphenylphosphine-stabilized undecagold. Dissertation, University of Oregon, Mar 2009.Google Scholar

  • [111]

    Krisha KS, Biswas S, Navin C, Yamane DG, Miller JT, Kumar CS. Millifluidics for chemical synthesis and time-resolved mechanistic studies. J Visualized Exp. 2013;81:50711.Google Scholar

  • [112]

    Gottesman R, Tangy A, Oussadon I, Zitoun D. Silver nanowires and nanoparticles from a millifluidic reactor: application to metal assisted silicon etching. New J Chem. 2012;36:2456–9.CrossrefGoogle Scholar

  • [113]

    Shen Y, Abolhasani M, Chen Y, Yang L, Coley CW, Bawendi MG, et al. In-situ microfluidic microfluidic study of biphasic nanocrystal ligand-exchange reactions using an oscillatory flow reactor. Angewandte Chemie Int Ed. 2017;56:16333–7.CrossrefGoogle Scholar

  • [114]

    Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21.PubMedCrossrefGoogle Scholar

  • [115]

    Hauck TS, Ghazani AA, Chan WC. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small. 2008;4:153–9.CrossrefGoogle Scholar

  • [116]

    Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DW, et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8:2439–55.PubMedCrossrefGoogle Scholar

  • [117]

    Kennedy ZC, Lisowski CE, Mitaru-Berceanu DS, Hutchison JE. Influence of ligand shell ligand shell composition upon interparticle interactions in multifunctional nanoparticles. Langmuir. 2015;31:12742–52.PubMedCrossrefGoogle Scholar

About the article

Samuel E. Lohse

Sam Lohse was born in Salt Lake City, Utah, in 1981. He received his Bachelors of Science degrees in Biochemistry and Chemistry from Idaho State University in 2003 and 2005, respectively. He also received his Masters of Science in Chemistry working under the direction of Dr Jeff Rosentreter in 2005. During his PhD studies, he worked under the direction of Dr Jim Hutchison at the University of Oregon, studying the direct synthesis of spherical gold nanoparticles using alkylthiosulfates (both in batch and millifluidic systems). He received his PhD in Chemistry from the University of Oregon in June of 2011. Sam worked as a postdoctoral researcher in Dr Catherine Murphy’s research group at the University of Illinois at Urbana-Champaign from 2011 to 2014, where he studied the connection between nanoparticle surface chemistry and their bio-interactions as a member of the Center for Sustainable Nanotechnology. Following his postdoctoral work, he joined Colorado Mesa University in the Fall of 2014, where his research group studies the physiochemical transformations of metal nanoparticles in environmentally relevant media.

Published Online: 2018-08-11

Citation Information: Physical Sciences Reviews, Volume 3, Issue 11, 20170120, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0120.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in