Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Nanostructured anode materials

Goriparti Subrahmanyam / Miele Ermanno / Remo Proietti Zaccaria
  • Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy
  • Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, 219 Zhongguan West Road, Zhenhai District, Ningbo City, Zhejiangg Province, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Capiglia Claudio
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/psr-2017-0149


Throughout the lithium ion battery (LIB) history, since they were mass produced by Sony in 1991, graphite-based materials have been the anode material of choice. There have been enormous efforts to search for ways of tapping higher energy with alternative anode materials to work in LIBs. Yet, those materials have always been subjected to detrimental mechanisms that hinder their applications in LIBs. Will nanotechnology and nanostructured anode materials change the energy storage technologies markedly in the future?

Keywords: nanostructuring of anode materials; intercalation/deintercalation; alloy/de-alloy; conversion anodes


  • [1]

    Schalkwijk WV, Scrosati B. Advances in lithium-ion batteries. Springer: Berlin, 2007.Google Scholar

  • [2]

    Yoshio M, Brodd RJ, Kozawa A. Lithium-ion batteries: science and technologies. Berlin: Springer, 2010Google Scholar

  • [3]

    Xia X, Liu YH, Zhang J. Lithium-ion batteries: advanced materials and technologies. New York: CRC Press, 2016.Google Scholar

  • [4]

    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources. 2014;257:421–3.Web of ScienceCrossrefGoogle Scholar

  • [5]

    Fujimoto H, Tokumitsu K, Mabuchi A, Chinnasamy N, Kasuh T. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. J Power Sources. 2010;195:7452–6.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Yang J, Zhou X-Y, Li J, Zou Y-L, Tang J-J. Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys. 2012;135:445–50.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Bridges CA, Sun X-G, Zhao J, Paranthaman MP, Dai S. In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C. 2012;116:7701–11.Web of ScienceCrossrefGoogle Scholar

  • [8]

    Meunier V, Kephart J, Roland C, Bernholc J, Initio A. Phys Rev Lett. 2002;88:075506.CrossrefPubMedGoogle Scholar

  • [9]

    Nishidate K, Hasegawa M. Energetics of lithium ion adsorption on defective carbon nanotubes. Phys Rev B. 2005;71:245418.CrossrefGoogle Scholar

  • [10]

    Hou J, Shao Y, Ellis MW, Moore RB, Yi B. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys. 2011;13:15384–402.CrossrefWeb of SciencePubMedGoogle Scholar

  • [11]

    Chen Z, Belharouak I, Sun YK, Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater. 2013;23:959–69.Web of ScienceCrossrefGoogle Scholar

  • [12]

    Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy & Env Sci. 2011;4:56–72.CrossrefGoogle Scholar

  • [13]

    Rudawski NG, Yates BR, Holzworth MR, Jones KS, Elliman RG, Volinsky AA. Ion beam-mixed ge electrodes for high capacity li rechargeable batteries. J Power Sources. 2013;223:336–40.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    Bruce PG, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47:2930–46.CrossrefGoogle Scholar

  • [15]

    Park C-M, Kim J-H, Kim H, Sohn H-J. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev. 2010;39:3115–41.PubMedWeb of ScienceCrossrefGoogle Scholar

  • [16]

    Wang Z, Zhou L, Lou XW. Metal oxide hollow nanostructures for lithium-ion batteries. Advanced Mater. 2012;24:1903–11.Web of ScienceCrossrefGoogle Scholar

  • [17]

    Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Advanced Mater. 2012;24:5166–80.Web of ScienceCrossrefGoogle Scholar

  • [18]

    Prosini PP, Carewska M, Loreti S, Minarini C, Passerini S. Lithium iron oxide as alternative anode for li-ion batteries. Int J Inorg Mater. 2000;2:365–70.CrossrefGoogle Scholar

  • [19]

    Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Env Sci. 2011;4:2682–99.CrossrefGoogle Scholar

  • [20]

    Lai C-H, Lu M-Y, Chen L-J. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem. 2012;22:19–30.CrossrefWeb of ScienceGoogle Scholar

  • [21]

    Boyanov S, Annou K, Villevieille C, Pelosi M, Zitoun D, Monconduit L. Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries. Ionics. 2008;14:183–90.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M. In situ Raman study on electrochemical li intercalation into graphite. J Electrochem Soc. 1995;142:20–6.CrossrefGoogle Scholar

  • [23]

    Whitehead AH, Edström K, Rao N, Owen JR. In situ X-ray diffraction studies of a graphite-based Li-ion battery negative electrode. J Power Sources. 1996;63:41–5.CrossrefGoogle Scholar

  • [24]

    Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ. Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem. 2012;22:12008–15.Web of ScienceCrossrefGoogle Scholar

  • [25]

    Zhao J, Buldum A, Han J, Ping Lu J. First-principles study of li-intercalated carbon nanotube ropes. Phys Rev Lett. 2000;85:1706–9.CrossrefPubMedGoogle Scholar

  • [26]

    Goriparti S, Miele E, Prato M, Scarpellini A, Marras S, Monaco S, et al. Direct synthesis Of carbon-doped Tio2–bronze nanowires As anode materials For high performance lithium-ion batteries. ACS Appl Mater Interfaces. 2015;7:25139–46CrossrefPubMedWeb of ScienceGoogle Scholar

  • [27]

    Claudio C, Remo Proietti Z, Subrahmanyam G, Miele E, De Angelis F. Direct synthesis of carbon-doped TiO2–bronze nanostructures as anode materials for high performance lithium batteries. PCT WO 2017/060407 A1

  • [28]

    Kasavajjula U, Wang C, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources. 2007;163:1003–9.Web of ScienceCrossrefGoogle Scholar

  • [29]

    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2007;3:31.Web of SciencePubMedGoogle Scholar

  • [30]

    Miele E, Goriparti S, Messina GC, Prato M, Ansaldo A, Barone A, et al. Porous silicon as nanostructured anode material for lithium ion batteries. ECS Trans. 2014;62:25–34.CrossrefGoogle Scholar

  • [31]

    Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O. SiOx-based anodes for secondary lithium batteries. Solid State Ionics. 2002;152–153:125–9.Google Scholar

  • [32]

    Goriparti S, Miele E, Scarpellini A, Marras S, Prato M, Ansaldo A, et al. Germanium nanocrystals-MWCNTs composites as anode materials for lithium ion batteries. ECS Trans. 2014;62:19–24.CrossrefGoogle Scholar

  • [33]

    Goriparti S, Gulzar U, Miele E, Palazon F, Scarpellini A, Marras S, et al. Facile synthesis of Ge-MWCNT nanocomposite electrodes for high capacity lithium ion batteries. J Mater Chem. 2017;5:19721–8.CrossrefWeb of ScienceGoogle Scholar

  • [34]

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407:496.PubMedCrossrefGoogle Scholar

About the article

Published Online: 2018-08-11

Citation Information: Physical Sciences Reviews, Volume 3, Issue 11, 20170149, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0149.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in