Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Photocatalysis with nucleic acids and peptides

Arthur Kuhlmann
  • Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber-Weg 6 76131 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergej Hermann
  • Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber-Weg 6 76131 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Weinberger
  • Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber-Weg 6 76131 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Penner
  • Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber-Weg 6 76131 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Achim Wagenknecht
  • Corresponding author
  • Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber-Weg 6 76131 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-08-11 | DOI: https://doi.org/10.1515/psr-2017-0170


In chemical photocatalysis, the photophysical process is coupled to a subsequent chemical reaction. The absorbed light energy contributes to the overall energy balance of the reaction and thereby increases its sustainability. Additionally, oligonucleotides and oligopeptides offer the possibility to control regio- and stereoselectivity as catalysts of organic reactions by providing potential substrate binding sites. We follow this path and want to explore how important substrate binding sites are for photocatalysis. The general concepts of photochemistry and biooligomer catalysis are combined for photochemically active DNAzymes for [2 + 2]-cycloadditions and proline-rich short peptides for nucleophilic additions to styrenes.

Keywords: electron transfer; energy transfer; DNA; oligonucleotide; proline


  • [1]

    Silverman SK. Deoxyribozymes: selection design and serendipity in the development of DNA catalysts. Acc Chem Res. 2009;42:1521–31.CrossrefPubMedGoogle Scholar

  • [2]

    Park S, Sugiyama H. DNA-based hybrid catalysts for asymmetric organic synthesis. Angew Chem Int Ed. 2010;49:3870–8.CrossrefGoogle Scholar

  • [3]

    Boersma AJ, Megens RP, Feringa BL, Roelfes G. DNA-based asymmetric catalysis. Chem Soc Rev. 2010;39:2083–92.PubMedCrossrefGoogle Scholar

  • [4]

    (a) Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302; (b) Chen J, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 1991;350:631–3.CrossrefPubMedGoogle Scholar

  • [5]

    Roelfes G, Feringa BL. DNA-based asymmetric catalysis. Angew Chem Int Ed. 2005;44:3230–2.CrossrefGoogle Scholar

  • [6]

    (a) Rioz-Martínez A, Roelfes G. DNA-based hybrid catalysis. Curr Opin Chem Biol. 2015;25:80–7. (b) Duchemin N, Heath-Apostolopoulos I, Smietana M. A decade of DNA-hybrid catalysis: from innovation to comprehension. Areniyadis S. Org Biomol Chem. 2017;15:7072–87.PubMedCrossrefGoogle Scholar

  • [7]

    Wang LX, Xiang JF, Tang YL. Novel DNA catalysts based on G-quadruplex for organic synthesis. Adv Synth Catal. Adv Synth Catal. 2014;357:13–20.Google Scholar

  • [8]

    Fournier P, Fiammengo R, Jäschke A. Allylic amination by a DNA-diene-iridium(I) hybrid catalyst. Angew Chem Int Ed. 2009;48:4426–9.CrossrefGoogle Scholar

  • [9]

    Dey S, Jäschke A. Tuning the stereoselectivity of a DNA-catalyzed michael addition through covalent modification. Angew Chem Int Ed. 2015;54:11279–82.CrossrefGoogle Scholar

  • [10]

    Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol. 1994;1:223–9.PubMedCrossrefGoogle Scholar

  • [11]

    (a) Höbartner C, Silverman SK. Recent advances in DNA catalysis. Biopolymers. 2007;87:279–92. (b) Pan W, Clawson GA. Catalytic DNAzymes: derivations and functions. Exp Opin Biol Ther. 2008;8:1071–85; (c) Silverman SK. Pursuing DNA catalysts for protein modification. Acc Chem Res. 2015;48:1369–79.PubMedCrossrefGoogle Scholar

  • [12]

    (a) Liu Q, Deiters A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. Acc Chem Res. 2013;47:45–55. (b) Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed. 2012;51:8446–76; (c) Kamiya Y, Asanuma H. Light-driven DNA nanomachine with a photoresponsive molecular engine. Acc Chem Res. 2014;47:1663–72.Google Scholar

  • [13]

    Barlev A, Sen D. DNA’s encounter with ultraviolet light: an instinct for self-preservation?. Acc Chem Res. 2018;51:526–33.PubMedCrossrefGoogle Scholar

  • [14]

    Chinnapen DJF, Sen D. A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc Natl Acad Sci USA. 2003;101:65–9.Google Scholar

  • [15]

    Chinnapen Daniel JF, Sen D. Towards elucidation of the mechanism of UV1C, a deoxyribozyme with photolyase activity. J Mol Biol. 2007;365:1326–36.CrossrefPubMedGoogle Scholar

  • [16]

    Lusic H, Young Douglas D, Lively Mark O, Deiters A. Photochemical DNA activation. Org Lett. 2007;9:1903–6.CrossrefPubMedGoogle Scholar

  • [17]

    Poplata S, Tröster A, Zou YQ, Bach T. Recent advances in the aynthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chem Rev. 2016;116:9748–815.CrossrefGoogle Scholar

  • [18]

    Hoffer M. α-Thymidin. Chem Ber. 1960;93:2777–81.CrossrefGoogle Scholar

  • [19]

    Weinberger M, Wagenknecht HA. Synthesis of a benzophenone C-nucleoside as potential triplet energy and charge donor in nucleic acids. Synthesis. 2012;44:648–52.Google Scholar

  • [20]

    Merz T, Wenninger M, Weinberger M, Riedle E, Wagenknecht HA, Schütz M. Conformational control of benzophenone-sensitized charge transfer in dinucleotides. Phys Chem Chem Phys. 2013;15:18607–7.CrossrefPubMedGoogle Scholar

  • [21]

    Gaß N, Wagenknecht HA. Synthesis of benzophenone nucleosides and their photocatalytic evaluation for [2+2] cycloaddition in aqueous media. Eur J Org Chem. 2015;2015:6661–8.CrossrefGoogle Scholar

  • [22]

    Stojanovic Milan N, Worgall Tilla S. Detecting hydrophobic molecules with nucleic acid-based receptors. Curr Opin Chem Biol. 2010;14:751–7.CrossrefPubMedGoogle Scholar

  • [23]

    Gaß N, Gebhard J, Wagenknecht HA. Photocatalysis of a [2+2] cycloaddition in aqueous solution using DNA three-way junctions as chiral photoDNAzymes. Chem Photo Chem. 2016;1:48–50.Google Scholar

  • [24]

    Fiebig T. Exciting DNA. J Phys Chem B. 2009;113:9348–9.PubMedCrossrefGoogle Scholar

  • [25]

    Zhang Y, de La Harpe K, Beckstead Ashley A, Improta R, Kohler B. UV-induced proton transfer between DNA strands. J Am Chem Soc. 2015;137:7059–62.PubMedCrossrefGoogle Scholar

  • [26]

    Schwalb NK, Temps F. Base sequence and higher-order structure induce the complex excited-state dynamics in DNA. Science. 2008;322:243–5.PubMedCrossrefGoogle Scholar

  • [27]

    Bucher DB, Pilles BM, Carell T, Zinth W. Charge separation and charge delocalization identified in long-living states of photoexcited DNA. Proc Natl Acad Sci USA. 2014;111:4369–74.CrossrefGoogle Scholar

  • [28]

    Cuquerella MC, Lhiaubet-Vallet V, Cadet J, Miranda MA. Benzophenone photosensitized DNA damage. Acc Chem Res. 2012;45:1558–70.PubMedCrossrefGoogle Scholar

  • [29]

    Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernandez CE, Swaminathan VN. Thymine dimerization in DNA is an ultrafast photoreaction. Science. 2007;315:625–9.PubMedCrossrefGoogle Scholar

  • [30]

    Curutchet C, Voityuk AA. Triplet-triplet energy transfer in DNA: a process that occurs on the nanosecond timescale. Angew Chem Int Ed. 2011;50:1820–2.CrossrefGoogle Scholar

  • [31]

    (a) Hoang L, Bahmanyar S, Houk KN, List B. Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra- and intermolecular aldol reactions. J Am Chem Soc. 2003;125:16–7; (b) Mukherjee S, Yang JW, Hoffmann S, List B. Asymmetric enamine catalysis. Chem Rev. 2007;107:5471–569; (c) Seebach D, Beck Albert  K, Badine DM, Limbach M, Eschenmoser A, Treasurywala Adi  M, Hobi R, Prikoszovich W, Linder B. Are oxazolidinones really unproductive, parasitic species in proline catalysis? – thoughts and experiments pointing to an alternative view. Helv Chim Acta. 2007;90:425–71.PubMedCrossrefGoogle Scholar

  • [32]

    (a) Ahrendt KA, Borths CJ, MacMillan DW. New strategies for organic catalysis: the first highly enantioselective organocatalytic diels−alder reaction. J Am Chem Soc. 2000;122:4243–4; (b) Paras NA, MacMillan DW. New strategies in organic catalysis: the first enantioselective organocatalytic friedel−crafts alkylation. J Am Chem Soc. 2001;123:4370–1; (c) Northrup AB, MacMillan DW. The first general enantioselective catalytic diels−alder reaction with simple α,β-unsaturated ketones. J Am Chem Soc. 2002;124:2458–60.CrossrefGoogle Scholar

  • [33]

    Dinér P, Kjærsgaard A, Lie MA, Jørgensen KA. On the origin of the stereoselectivity in organocatalysed reactions with trimethylsilyl‐protected diarylprolinol. Chem Eur J. 2007;14:122–7.Google Scholar

  • [34]

    (a) Drauz K, Waldmann H. Enzyme catalysis in organic synthesis, vol. 1. Weinheim: VCH, 1995; (b) Dugas H, Bioorganic chemistry. A chemical approach to enzyme action, vol. 3. Berlin: Springer Verlag, 1996.Google Scholar

  • [35]

    Wennemers H. Asymmetric catalysis with peptides. Chem Commun. 2011;47:12036–41.CrossrefGoogle Scholar

  • [36]

    Miller SJ, Copeland GT, Papaioannou N, Horstmann TE, Ruel EM. Kinetic resolution of alcohols catalyzed by tripeptides containing the N-alkylimidazole substructure. J Am Chem Soc. 1998;120:1629–30.CrossrefGoogle Scholar

  • [37]

    Miller SJ. In search of peptide-based catalysts for asymmetric organic synthesis. Acc Chem Res. 2004;37:601–10.PubMedCrossrefGoogle Scholar

  • [38]

    Lewis CA, Gustafson JL, Chiu A, Balsells J, Pollard D, Murry J, et al. A case of remote asymmetric induction in the peptide-catalyzed desymmetrization of a Bis(phenol). J Am Chem Soc. 2008;130:16358–65.CrossrefPubMedGoogle Scholar

  • [39]

    Lewis Chad A, Miller Scott J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew Chem Int Ed. 2006;45:5616–9.CrossrefGoogle Scholar

  • [40]

    (a) Sculimbrene BR, Miller SJ. Discovery of a catalytic asymmetric phosphorylation through selection of a minimal kinase mimic: a concise total synthesis of d-myo-Inositol-1-phosphate. J Am Chem Soc. 2001;123:10125–6; (b) Jordan PA, Kayser-Bricker KJ, Miller SJ. Asymmetric phosphorylation through catalytic P(III) phosphoramidite transfer: enantioselective synthesis of D-myo-inositol-6-phosphate. Proc Natl Acad Sci USA. 2010;107:20620; (c) Fiori KW, Puchlopek AL, Miller SJ. Enantioselective sulfonylation reactions mediated by a tetrapeptide catalyst. Nat Chem. 2009;1:630–4.CrossrefGoogle Scholar

  • [41]

    Müller Christian E, Hrdina R, Wende Raffael C, Schreiner Peter R. A multicatalyst system for the one‐pot desymmetrization/oxidation of meso‐1,2‐alkane diols. Chem Eur J. 2011;17:6309–14.CrossrefGoogle Scholar

  • [42]

    List B, Lerner RA, Barbas CF. Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc. 2000;122:2395–6.CrossrefGoogle Scholar

  • [43]

    Tanaka F, Barbas III CF. Phage display selection of peptides possessing aldolase activity. Chem Commun. 2001;0:769–70.Google Scholar

  • [44]

    Martin HJ, List B. Mining sequence space for asymmetric aminocatalysis: N-terminal prolyl-peptides efficiently catalyze enantioselective aldol and michael reactions. Synlett. 2003;2003:1901–2.Google Scholar

  • [45]

    Tang Z, Yang ZH, Cun LF, Gong LZ, Mi AQ, Jiang YZ. Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: unprecedented regiocontrol in aqueous media. Org Lett. 2004;6:2285–7.CrossrefPubMedGoogle Scholar

  • [46]

    (a) Krattiger P, Kovasy R, Revell JD, Ivan S, Wennemers H. Increased structural complexity leads to higher activity: peptides as efficient and versatile catalysts for asymmetric aldol reactions. Org Lett. 2005;7:1101–3; (b) Krattiger P, Kovàsy R, Revell Jefferson D, Wennemers H. Using catalyst-substrate coimmobilization for the discovery of catalysts for asymmetric aldol reactions in split-and-mix libraries. QSAR & Combina Sci. 2005;24:1158–63; (c) Wiesner M, Revell Jefferson  D, Wennemers H. Tripeptides as efficient asymmetric catalysts for 1,4‐addition reactions of aldehydes to nitroolefins–A rational approach. Angew Chem. 2008;120:1897–900.CrossrefPubMedGoogle Scholar

  • [47]

    (a) Revell JD, Gantenbein D, Krattiger P, Wennemers H. Solid‐supported and pegylated H–Pro–Pro–Asp–NHR as catalysts for asymmetric aldol reactions. J Pept Sci. 2006;84:105–13; (b) Revell JD, Wennemers H. Functional group requirements within the peptide H-Pro-Pro-Asp-NH2 as a catalyst for aldol reactions. Tetrahedron 2007;63:8420–4; (c) Revell Jefferson D, Wennemers H. Investigating Sequence Space: How important is the spatial arrangement of functional groups in the asymmetric aldol reaction catalyst H‐Pro‐Pro‐Asp‐NH2? Adv Synt Catal. 2008;350:1046–52; (d) Messerer M, Wennemers H. Reversing the enantioselectivity of a peptidic catalyst by changing the solvent. Synlett. 2011;2011:499–502.CrossrefGoogle Scholar

  • [48]

    (a) Wiesner M, Neuburger M, Wennemers H. Tripeptides of the type H‐D‐Pro‐Pro‐Xaa‐NH2 as catalysts for asymmetric 1,4‐addition reactions: structural requirements for high catalytic efficiency. Chem Eur J. 2009;15:10103–9; (b) Wiesner M, Upert G, Angelici G, Wennemers H. Enamine catalysis with low catalyst loadings - high efficiency via kinetic studies. J Am Chem Soc. 2010;132:6–7; (c) Wiesner M, Wennemers H. Peptide-catalyzed conjugate addition reactions of aldehydes to nitroolefins. Synthesis. 2010;2010:1568–71.CrossrefGoogle Scholar

  • [49]

    Schnitzer T, Wiesner M, Krattiger P, Revell JD, Wennemers H. Is more better? A comparison of tri- and tetrapeptidic catalysts. Org Biomol Chem. 2017;15:5877–81.CrossrefGoogle Scholar

  • [50]

    Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem Rev. 2008;108:3795–892.PubMedCrossrefGoogle Scholar

  • [51]

    (a) Arnold DR, Maroulis AJ. Radical ions in photochemistry. 4. The 1,1-diphenylethylene anion radical by photosensitization (electron transfer). J Am Chem Soc. 1977;99:7355–6; (b) Maroulis AJ, Shigemitsu Y, Arnold DR. Radical ions in photochemistry. 5. Photosensitized (electron transfer) cyanation of olefins. J Am Chem Soc. 1978;100:535–41.CrossrefGoogle Scholar

  • [52]

    Penner A, Bätzner E, Wagenknecht HA. Chemical photocatalysis with 1-(N,N-Dimethylamino)pyrene. Synlett. 2012;23:2803–7.CrossrefGoogle Scholar

  • [53]

    Romero NA, Nicewicz DA. Mechanistic insight into the photoredox catalysis of anti-markovnikov alkene hydrofunctionalization reactions. J Am Chem Soc. 2014;136:17024–35.PubMedCrossrefGoogle Scholar

  • [54]

    Weiser M, Hermann S, Wagenknecht HA. Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-markovnikov orientation. Beilstein J Org Chem. 2015;11:568–75.CrossrefGoogle Scholar

  • [55]

    Hermann S, Wagenknecht HA. Synthesis of N,N‐dimethylaminopyrene‐modified short peptides for chemical photocatalysis. J Pept Sci. 2017;23:563–6.CrossrefPubMedGoogle Scholar

  • [56]

    Hermann S, Sack D, Wagenknecht HA. Proline-rich short peptides with photocatalytic activity for the nucleophilic addition of methanol to phenylethylenes. Eur J Org Chem. 2018;2018:2204–7.CrossrefGoogle Scholar

About the article

Published Online: 2018-08-11

This work was financially supported by the Deutsche Forschungsgemeinschaft (Wa 1386/16), the Graduiertenkolleg GRK 1626 (DFG) and KIT.

Citation Information: Physical Sciences Reviews, Volume 3, Issue 11, 20170170, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0170.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in