Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Description of excited states in photochemistry with theoretical methods

Thomas Merz / Genaro Bierhance
  • Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät, Institut für Chemie, Abt. Theoretische Chemie, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ernst-Christian Flach
  • Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät, Institut für Chemie, Abt. Theoretische Chemie, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Kats / Denis Usvyat
  • Corresponding author
  • Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät, Institut für Chemie, Abt. Theoretische Chemie, Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Schütz
  • Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät, Institut für Chemie, Abt. Theoretische Chemie, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-14 | DOI: https://doi.org/10.1515/psr-2017-0178

Abstract

The theoretical treatment of molecules in electronically excited states is much more complicated than in the ground state (GS) and remains a challenge. In contrast to the GS, electronically excited states can hardly be treated by a single determinant or configuration state function, not even near equilibrium geometry. This calls for multireference methods, or, alternatively, for time-dependent response methods, such as time-dependent density functional theory, or time-dependent coupled cluster response theory. In this contribution, we provide an overview on the latter techniques and illustrate on several examples how these methods can be used to theoretically investigate photoreactions.

Keywords: excited state potential energy surfaces; time-dependent coupled cluster response

References

  • [1]

    Schmidt T, et al. QM/MM investigations of organic chemistry oriented questions. Berlin/Heidelberg: Springer, 2012:1–77.Google Scholar

  • [2]

    González L, Escudero D, Serrano-Andrés L. Progress and challenges in the calculation of electronic excited states. Chemphyschem Eur J Chem Phy Phy Chem. 2012;13:28–51.CrossrefGoogle Scholar

  • [3]

    Bernardi F, Olivucci M, Robb MA. Potential energy surface crossings in organic photochemistry. Chem Soc Rev. 1996;25:321–8.CrossrefGoogle Scholar

  • [4]

    Ponder JW, Case DA. Force fields for protein simulations. Adv Protein Chem. 2003;66:27–85.CrossrefPubMedGoogle Scholar

  • [5]

    Senn HM, Thiel W. QM/MM methods for biological systems. Reiher M, editors. Vol. 268, Berlin/Heidelberg: Springer, 2007:173–290.Google Scholar

  • [6]

    Born M, Oppenheimer R. Zur Quantentheorie der Molekeln. Ann Phys. 1927;389:457–84.CrossrefGoogle Scholar

  • [7]

    Teller E. The crossing of potential surfaces. J Phys Chem. 1937;41:109–16.CrossrefGoogle Scholar

  • [8]

    Domcke W, Woywod C. Direct construction of diabetic states in the CASSCF approach. Application to the conical intersection of the 1A2 and 1B1 excited states of ozone. Chem Phys Lett. 1993;216:362–8. Retrieved November 5, 2012. DOI: .CrossrefGoogle Scholar

  • [9]

    Berry MV, Wilkinson M. Diabolical points in the spectra of triangles. Proc R Soc A Math, Phys Eng Sci. 1984;392:15–43. Retrieved October 26, 2012. http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1984.0022Crossref

  • [10]

    Yarkony D. Diabolical conical intersections. Rev Mod Phys. 1996;68:985–1013.CrossrefGoogle Scholar

  • [11]

    Roos BO, Taylor PR, Siegbahn PEM. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys. 1980;48:157–73.CrossrefGoogle Scholar

  • [12]

    Foresman JB, Head-Gordon M, Pople JA, Frisch MJ. Toward a systematic molecular orbital theory for excited states. J Phys Chem. 1992;96:135–49.CrossrefGoogle Scholar

  • [13]

    Trofimov AB, Krivdina IL, Weller J, Schirmer J. Algebraic-diagrammatic construction propagator approach to molecular response properties. Chem Phys. 2006;329:1–10.CrossrefGoogle Scholar

  • [14]

    Schirmer J. Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys Rev. 1982;26:2395.CrossrefGoogle Scholar

  • [15]

    Oddershede J. Propagator Methods. In: Advances in chemical physics. John Wiley & Sons, Inc, 2007:201–39.Google Scholar

  • [16]

    Christiansen O, Jørgensen P, Hättig C. Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy. Int J Quantum Chem. 1998;68:1–52.CrossrefGoogle Scholar

  • [17]

    Koch H, Jorgensen P. Coupled cluster response functions. J Chem Phys. 1990;93:3333–44.CrossrefGoogle Scholar

  • [18]

    Sekino H, Bartlett RJ. A linear response, coupled-cluster theory for excitation energy. Int J Quantum Chem. 1984;26:255–65.CrossrefGoogle Scholar

  • [19]

    Bauernschmitt R, Häser M, Treutler O, Ahlrichs R. Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chem Phys Lett. 1997;264:573.CrossrefGoogle Scholar

  • [20]

    Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett. 1984;52:997.CrossrefGoogle Scholar

  • [21]

    Bartlett R, Musiał M. Coupled-cluster theory in quantum chemistry. Rev Mod Phys. 2007;79:291–352.CrossrefGoogle Scholar

  • [22]

    Koch H, Christiansen O, Jørgensen P, Olsen J. Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models. Chem Phys Lett. 1995;244:75–82.CrossrefGoogle Scholar

  • [23]

    Hättig C, Weigend F. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. J Chem Phys. 2000;113:5154.CrossrefGoogle Scholar

  • [24]

    Christiansen O, Koch H, Jørgensen P. The second-order approximate coupled cluster singles and doubles model CC2. Chem Phys Lett. 1995b;243:409–18.CrossrefGoogle Scholar

  • [25]

    Christiansen O, Koch H, Jørgensen P. Response functions in the CC3 iterative triple excitation model. J Chem Phys. 1995a;103:7429–41.CrossrefGoogle Scholar

  • [26]

    Köhn A, Tajti A. Can coupled-cluster theory treat conical intersections?. J Chem Phys. 2007;127:044105.CrossrefPubMedGoogle Scholar

  • [27]

    Kats D, Usvyat D, Schütz M. Second-order variational coupled-cluster linear-response method: a Hermitian time-dependent theory. Phys Rev. 2011;83:062503.CrossrefGoogle Scholar

  • [28]

    Wälz G, Kats D, Usvyat D, Korona T, Schütz M. Application of Hermitian time-dependent coupled-cluster response Ansätze of second order to excitation energies and frequency-dependent dipole polarizabilities. Phys Rev. 2012;86:052519.CrossrefGoogle Scholar

  • [29]

    Ledermüller K, Schütz M. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states. J Chem Phys. 2014;140:164113.CrossrefPubMedGoogle Scholar

  • [30]

    Kats D, Schütz M. A multistate local coupled cluster CC2 response method based on the Laplace transform. J Chem Phys. 2009;131:124117.CrossrefPubMedGoogle Scholar

  • [31]

    Ledermüller K, Kats D, Schütz M. Local CC2 response method based on the Laplace transform: orbital-relaxed first-order properties for excited states. J Chem Phys. 2013;139:084111.PubMedCrossrefGoogle Scholar

  • [32]

    Schütz M. Oscillator strengths, first-order properties, and nuclear gradients for local ADC (2). J Chem Phys. 2015;142:214103.PubMedCrossrefGoogle Scholar

  • [33]

    Hohenberg P. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–71.CrossrefGoogle Scholar

  • [34]

    Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993b;98:5648.CrossrefGoogle Scholar

  • [35]

    Casida ME, Huix-Rotllant M. Progress in time-dependent density-functional theory. Annu Rev Phys Chem. 2012;63:287–323.PubMedCrossrefGoogle Scholar

  • [36]

    Parac M, Grimme S. Comparison of multireference Møller−Plesset theory and time-dependent methods for the calculation of vertical excitation energies of molecules. J Phys Chem. 2002;106:6844–50.CrossrefGoogle Scholar

  • [37]

    Dreuw A, Weisman JL, Head-Gordon M. Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys. 2003;119:2943–7.CrossrefGoogle Scholar

  • [38]

    Grimme S, Parac M. Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. Chemphyschem Eur J Chem Phys Phys Chem. 2003;4:292–5.CrossrefGoogle Scholar

  • [39]

    Tozer D. Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory. J Chem Phys. 2003;119:12697–9.CrossrefGoogle Scholar

  • [40]

    Peach MJG, Benfield P, Helgaker T, Tozer DJ. Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys. 2008;128:44118.CrossrefGoogle Scholar

  • [41]

    Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–7.CrossrefGoogle Scholar

  • [42]

    Warshel A, Levitt M. Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilisation of the carbonium ion in the reaction of lysozyme. J Mol Biol. 1976;103:227–49.CrossrefGoogle Scholar

  • [43]

    Field MJ, Bash PA, Karplus M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem. 1990;11:700–33.CrossrefGoogle Scholar

  • [44]

    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.CrossrefGoogle Scholar

  • [45]

    Klamt A, Schuurmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans. 1993;2:799–805.Google Scholar

  • [46]

    Case DA, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26:1668–88.CrossrefPubMedGoogle Scholar

  • [47]

    Brooks BR, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30:1545–614.CrossrefPubMedGoogle Scholar

  • [48]

    Brooks BR, et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4:187.CrossrefGoogle Scholar

  • [49]

    Allinger NL, Kok RA, Imam MR. Hydrogen bonding in MM2. J Comput Chem. 1988;9:591–5.CrossrefGoogle Scholar

  • [50]

    Allinger NL, Yuh YH, Lii JH. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J Am Chem Soc. 1989;111:8551–66.CrossrefGoogle Scholar

  • [51]

    Allinger NL, Chen K, Lii JH. An improved force field (MM4) for saturated hydrocarbons. J Comput Chem. 1996;17:642–68.CrossrefGoogle Scholar

  • [52]

    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–35.CrossrefGoogle Scholar

  • [53]

    Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–47.PubMedCrossrefGoogle Scholar

  • [54]

    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.CrossrefPubMedGoogle Scholar

  • [55]

    Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993;97:10269–80.CrossrefGoogle Scholar

  • [56]

    Hu H, Yang W. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. J Mol Structure: THEOCHEM. 2009;898:17–30.CrossrefGoogle Scholar

  • [57]

    Acevedo O, Jorgensen WL. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Acc Chem Res. 2010;43:142–51.PubMedCrossrefGoogle Scholar

  • [58]

    Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl. 2009;48:1198–229.PubMedCrossrefGoogle Scholar

  • [59]

    Hu LH, Söderhjelm P, Ryde U. On the convergence of QM/MM energies. J Chem Theory Comput. 2011;7:761–77.CrossrefPubMedGoogle Scholar

  • [60]

    Mills G, Jónsson H. Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett. 1994;72:1124–7.CrossrefPubMedGoogle Scholar

  • [61]

    Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths. J Chem Phys. 2008;128:134106.PubMedCrossrefGoogle Scholar

  • [62]

    Klenin K, Strodel B, Wales DJ, Wenzel W. Modelling proteins: conformational sampling and reconstruction of folding kinetics. Biochim Biophys Acta. 2011;1814:977–1000.PubMedCrossrefGoogle Scholar

  • [63]

    Lechner R, Kümmel S, König B. Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids. Photochem Photobiol Sci: Off J Eur Photochem Assoc Eur Soc Photobiol. 2010;9: 1367–77.CrossrefGoogle Scholar

  • [64]

    Megerle U, et al. Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Phys Chem Chem Phys. 2011;13:8869–80.PubMedCrossrefGoogle Scholar

  • [65]

    Zheng Y-J, Ornstein RL. A theoretical study of the structures of flavin in different oxidation and protonation states. J Am Chem Soc. 1996;118:9402–8.CrossrefGoogle Scholar

  • [66]

    Sikorska E, Khmelinskii IV, Koput J, Bourdelande JL, Sikorski M. Electronic structure of isoalloxazines in their ground and excited states. J Mol Struct. 2004;697:137–41.CrossrefGoogle Scholar

  • [67]

    Salzmann S, Marian CM. The photophysics of alloxazine: a quantum chemical investigation in vacuum and solution. Photochem Photobiol Sci: Off J Eur Photochem Assoc Eur Soc Photobiol. 2009;8: 1655–66.CrossrefGoogle Scholar

  • [68]

    Mathes T, Vogl C, Stolz J, Hegemann P. In vivo generation of flavoproteins with modified cofactors. J Mol Biol. 2009;385:1511–8.CrossrefPubMedGoogle Scholar

  • [69]

    Zirak P, Penzkofer A, Mathes T, Hegeman P. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents. Chem Phys. 2009;358:111–22.CrossrefGoogle Scholar

  • [70]

    Sadeghian K, Bocola M, Schütz M. A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. J Am Chem Soc. 2008;130:12501–13.PubMedCrossrefGoogle Scholar

  • [71]

    Sadeghian K, Bocola M, Schütz M. A QM/MM study on the fast photocycle of blue light using flavin photoreceptors in their light-adapted/active form. Phys Chem Chem Phys. 2010;12:8840–6.CrossrefPubMedGoogle Scholar

  • [72]

    Zirak P, Penzkofer A, Mathes T, Hegemann P. Absorption and emission spectroscopic characterization of BLUF protein Slr1694 from Synechocystis sp. PCC6803 with roseoflavin cofactor. J Photochem Photobiol B Biol. 2009;97:61–70.CrossrefGoogle Scholar

  • [73]

    Merz T, Sadeghian K, Schütz M. Why BLUF photoreceptors with roseoflavin cofactor loose their biological functionality. Phys Chem Chem Phys. 2011;13:14775–83.CrossrefGoogle Scholar

  • [74]

    Bauer A, Westkamper F, Grimme S, Bach T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature. 2005;436:1139–40.CrossrefPubMedGoogle Scholar

  • [75]

    Fleming SA. Chemical reagents in photo affinity labeling. Tetrahedron. 1995;51:12479–520.CrossrefGoogle Scholar

  • [76]

    Ravelli D, Dondi D, Fagnoni M, Albini A. Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev. 2009;38:1999–2011.PubMedCrossrefGoogle Scholar

  • [77]

    Dorman G, Prestwich GD. Benzophenone photophores in biochemistry. Biochemistry. 1994;33:5661–73.CrossrefPubMedGoogle Scholar

  • [78]

    Galardy RE, Craig LC, Jamieson JD, Printz MP. Photoaffinity labeling of peptide hormone binding sites. J Biol Chem. 1974;249:3510–8.PubMedGoogle Scholar

  • [79]

    Cauble DF, Lynch V, Krische MJ. Studies on the enantioselective catalysis of photochemically promoted transformations: ‘sensitizing receptors’ as chiral catalysts. J Crganic Chem. 2003;68:15–21.Google Scholar

  • [80]

    Fagnoni M, Dondi D, Ravelli D, Albini A. Photocatalysis for the formation of the C-C bond. Chem Rev. 2007;107:2725–56. Retrieved October 26, 2012 http://www.ncbi.nlm.nih.gov/pubmed/17530909.Crossref

  • [81]

    Svoboda J, König B. Templated photochemistry: toward catalysts enhancing the efficiency and selectivity of photoreactions in homogeneous solutions. Chem Rev. 2006;106:5413–30.PubMedCrossrefGoogle Scholar

  • [82]

    Müller C, et al. Enantioselective intramolecular [2 + 2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. J Am Chem Soc. 2011;133:16689–97.CrossrefPubMedGoogle Scholar

  • [83]

    Wessig P. Organocatalytic enantioselective photoreactions. Angew Chem Int Ed Engl. 2006;45:2168–71.CrossrefPubMedGoogle Scholar

  • [84]

    Müller C, Bauer A, Bach T. Light-driven enantioselective organocatalysis. Angew Chem Int Ed Engl. 2009;48:6640–2.CrossrefPubMedGoogle Scholar

  • [85]

    Achenbach JC, Chiuman W, Cruz RPG, Li Y. DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol. 2004;5:16.Google Scholar

  • [86]

    Li Y, Breaker RR. Deoxyribozymes: new players in the ancient game of biocatalysis. Curr Opin Struct Biol. 1999;9:315–23.CrossrefPubMedGoogle Scholar

  • [87]

    Babii O, et al. Direct photocontrol of peptidomimetics: an alternative to oxygen‐dependent photodynamic cancer therapy. Angewandte Chemie. 2016;128:5583–6.CrossrefGoogle Scholar

  • [88]

    Göstl R, Hecht S. Controlling covalent connection and disconnection with light. Angew Chem Int Ed. 2014;53:8784–7.CrossrefGoogle Scholar

  • [89]

    Göstl R, Hecht S. Photoreversible prodrugs and protags: switching the release of maleimides by using light under physiological conditions. Chem A Eur J. 2015;21:4422–7.CrossrefGoogle Scholar

  • [90]

    Grabowski ZR, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev. 2003;103:3899–4032.PubMedCrossrefGoogle Scholar

  • [91]

    Yoshihara T, Druzhinin SI, Zachariasse KA. Fast intramolecular charge transfer with a planar rigidized electron donor/acceptor molecule. J Am Chem Soc. 2004;126:8535–9.PubMedCrossrefGoogle Scholar

  • [92]

    Jung A, et al. Structure of a bacterial BLUF photoreceptor: insights into blue-mediated signal transduction. Proc Nat Acad Sci. 2005;101:12306–11.Google Scholar

  • [93]

    Woon DE, Dunning Jr TH. Gaussian basis sets for use in correlated molecular calculations. III. The second row atoms, Al-Ar. J Chem Phys. 1993;98:1358–71.CrossrefGoogle Scholar

  • [94]

    Perdew J. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B. 1986;33:8822–4.CrossrefGoogle Scholar

  • [95]

    Becke AD. A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys. 1993a;98:1372.CrossrefGoogle Scholar

  • [96]

    Schäfer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys. 1992;97:2571–8.CrossrefGoogle Scholar

  • [97]

    Grimme S, Waletzke M. A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys. 1999;111:5645–55.CrossrefGoogle Scholar

  • [98]

    Cremer D. On the correct usage of the Cremer–Pople puckering parameters as quantitative descriptors of ring shapes – a reply to recent criticism by Petit, Dillen and Geise. Acta Crystallogr B Struct Sci. 1984;40:498–500.CrossrefGoogle Scholar

About the article

Published Online: 2018-09-14


Citation Information: Physical Sciences Reviews, Volume 3, Issue 11, 20170178, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0178.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in