Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Raman microspectroscopy for Cultural Heritage studies

Maria Cristina Caggiani / Philippe ColombanORCID iD: http://orcid.org/0000-0001-6099-5423
Published Online: 2018-09-20 | DOI: https://doi.org/10.1515/psr-2018-0007

Abstract

The Raman effect is at the basis of Raman scattering and microspectrometry: in the first part of the chapter, it is very shortly exposed together with differences with infrared (IR) spectroscopy, and advantages and drawbacks of the technique. The importance of the choice of the excitation wavelength, of the spectrometer (fixed, portable and handheld) and of the optics is underlined, while the information provided by the technique for inorganic and organic materials is considered. The surface-enhanced Raman spectroscopy (SERS) theory and principle applications are also taken into account. In the second part of the chapter, all the different applications of Raman and SERS to cultural heritage materials are contemplated: minerals, gemstones, rocks, patinas and corrosion products, glass, pottery, mortars, dyes, binders, resins, paper, parchment, inks and human remains. For each category of objects, the answers that Raman microspectrometry and SERS can give to the archaeometric and conservation-related questions, the in situ investigations, the search of specific spectral parameters and the use of chemometrics are shown, together with the most recent advances in the field.

Keywords: Raman microspectroscopy; SERS; Mobile Raman

References

  • [1]

    Krishnan RS, Shankar RK. Raman effect: history of the discovery. J Raman Spectrosc. 1981;10:1–8.CrossrefGoogle Scholar

  • [2]

    Colomban P. The destructive/non-destructive identification of enameled pottery, glass artifacts and associated pigments—a brief overview. Arts. 2013;2:77–110.CrossrefGoogle Scholar

  • [3]

    Long DA. Raman spectroscopy. New York: McGraw-Hill International Book Company, 1977.Google Scholar

  • [4]

    Long DA. The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Chichester: John Wiley & Sons Ltd, 2002.Google Scholar

  • [5]

    Poulet H, Mathieu JP. Spectres de vibration et symétrie des cristaux. idem, Vibrational spectra and symmetry of crystal, Gordon & Breach Sci. Publ. Ltd (1976) New-York: Gordon & Breach Sci. Publ. Ltd, 1970.Google Scholar

  • [6]

    Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36:485–96.CrossrefGoogle Scholar

  • [7]

    Gouadec G, Bellot-Gurlet L, Baron D, Colomban P. Raman mapping for the investigation of nanoPHased materials (Ch. 4). In: Zoubir A, editor(s). Raman imaging, techniques & applications Vol. 168. Berlin: Springer Series in Optical Sciences, 2012:85–118.Google Scholar

  • [8]

    Colomban P, Gouadec G. Raman scattering theory and interpretation (Ch. 2). In: Amer MS, editor(s). Raman spectroscopy for soft matter applications. Hoboken: John Wiley & Sons, Inc., 2009:11–29.Google Scholar

  • [9]

    Colomban P. The on-site/remote Raman analysis with portable instruments - A review of drawbacks and success in Cultural Heritage studies and other associated fields. J Raman Spectrosc. 2012;43:1529–35.CrossrefGoogle Scholar

  • [10]

    Miliani C, Rosi F, Brunetti BG, Sgamellotti A. In situ non-invasive study of artworks: the MOLAB multitechnique approach. Acc Chem Res. 2010;43:728–38.CrossrefGoogle Scholar

  • [11]

    Vandenabeele P, Edwards HGM, Jehlička J. The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev. 2014;43:2628–49.CrossrefPubMedGoogle Scholar

  • [12]

    Colomban P, Milande V, Lucas H. On-site Raman analysis of medici porcelain. J Raman Spectrosc. 2004;35:68–72.CrossrefGoogle Scholar

  • [13]

    Colomban P. On-site Raman study of artwork: procedure and illustrative examples. J Raman Spectrosc. 2018;49:921–34. DOI: .CrossrefGoogle Scholar

  • [14]

    Madariaga JM. Analytical methods in the field of cultural heritage. Anal Methods. 2015;7:4848–76.CrossrefGoogle Scholar

  • [15]

    Vandenabeele P, Edwards HGM, Moens L. A decade of Raman spectroscopy in art and archaeology. Chem Rev. 2007;107:675–86.CrossrefPubMedGoogle Scholar

  • [16]

    Fleischmann M, Hendra PJ, Mcquillan AJ. Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26:163–6.CrossrefGoogle Scholar

  • [17]

    Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry. 1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem. 1977;84:1–20.Google Scholar

  • [18]

    Creighton JA, Blatchford CG, Albrecht MG. Plasma resonance enhancement of Raman-scattering by pyridine adsorbed on Silver or Gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans. 1979;75:790–8.CrossrefGoogle Scholar

  • [19]

    Pozzi F, Leona M. Surface-enhanced Raman spectroscopy in art and archaeology. J Raman Spectrosc. 2016;47:67–77.CrossrefGoogle Scholar

  • [20]

    Banholzer MJ, Millestone JE, Qin L, Mirkin CA. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev. 2008;37:885–97.PubMedCrossrefGoogle Scholar

  • [21]

    Mancini D, Tournié A, Caggiani MC, Colomban P. Testing of Raman spectroscopy as a non-invasive tool for the investigation of glass-protected miniature portraits. J Raman Spectrosc. 2012;43:294–302.CrossrefGoogle Scholar

  • [22]

    Matousek P, Towrie M, Ma C, Kwok WM, Phillips D, Toner WT, et al. Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. J Raman Spectrosc. 2001;32:983–8.CrossrefGoogle Scholar

  • [23]

    Culka A, Jehlička J. Sequentially shifted excitation: A tool for suppression of laser‐induced fluorescence in mineralogical applications using portable Raman spectrometers. J Raman Spectrosc. 2018;49. DOI: .CrossrefGoogle Scholar

  • [24]

    Stanzani E, Bersani D, Lottici PP, Colomban P. Analysis of artist’s palette on a sixteenth century wood panel painting by portable and laboratory Raman instruments. Vibr Spectrosc. 2016;85:62–70.CrossrefGoogle Scholar

  • [25]

    Colomban P, Tournié A, Meynard P, Maucuer M. On-site Raman and XRF analysis of Japanese/Chinese Bronze/Brass Patina – the search of specific Raman signatures. J Raman Spectrosc. 2012b;43:799–808.CrossrefGoogle Scholar

  • [26]

    Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, Everall N, et al. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc. 2005a;59:393–400.CrossrefGoogle Scholar

  • [27]

    Eliasson P, Claybourn M, Matousek P. Deep subsurface Raman spectroscopy of turbid media by a defocused collection system. Appl Spectrosc. 2007;61:1123–7.CrossrefPubMedGoogle Scholar

  • [28]

    Conti C, Colombo C, Realini M, Zerbi G, Matousek P. Subsurface Raman analysis of thin painted layers. Appl Spectrosc. 2014;68:686–91.CrossrefPubMedGoogle Scholar

  • [29]

    Havel M, Colomban P. Smart Raman and Rayleigh spectroscopy for the analysis of nanomaterials. Spectroscopy Europe-Microsc Anal. 2006;20:11–4.Google Scholar

  • [30]

    Monnier J, Bellot-Gurlet L, Baron D, Neff D, Guillot I, Dillmann P. A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products. J Raman Spectrosc. 2011;42:773–81.CrossrefGoogle Scholar

  • [31]

    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds: part a: theory and applications in Inorganic chemistry, 6th ed. Hoboken: J. Wiley & Sons, 2009. DOI: .CrossrefGoogle Scholar

  • [33]

    Veneranda M, Aramendia J, Arrizabalaga I, Bellot-Gurlet L, Colomban P, Castro K, et al. FTIR spectroscopic semi-quantification of iron corrosion phases: a new method to evaluate the protective ability index of rust layers affected by chlorides. Corrosion Sci 2018;133:68–77.CrossrefGoogle Scholar

  • [34]

    Havel M, Baron D, Colomban P. Smart Raman/Rayleigh imaging of nanosized sic materials using the spatial correlation model. J Mater Sci. 2004;39:6183–90.CrossrefGoogle Scholar

  • [35]

    Karr C, Jr, editor. Infrared and Raman spectroscopy of lunar and terrestrial minerals. New-York: Academic Press-Elsevier, 1975. DOI: .CrossrefGoogle Scholar

  • [36]

    Colomban P. Raman study of the inorganic polymer – superionic nasicon transformation: dynamic, static orientational disorder and superionic conductivity. J Mol Struct. 1986;143:191–4.CrossrefGoogle Scholar

  • [37]

    Colomban P. Imagerie Raman de matériaux et dispositifs nano/microhétérogènes, Paris: Techniques de l’Ingénieur. RE 5v2/13 2013bGoogle Scholar

  • [38]

    Colomban P, Sagon G, Faurel X. Differentiation of antique ceramics from the Raman spectra of their colored glazes and paintings. J Raman Spectrosc. 2001;32:351–60.CrossrefGoogle Scholar

  • [39]

    Pinet M, Smith DC, Lasnier B. La microsonde Raman en gemmologie, revue de gemmologie. Paris: Association Française de Gemmologie, 1992. (Hors Série: Paris).Google Scholar

  • [40]

    Bersani D, Lottici PP. Raman spectroscopy of minerals and mineral pigments in archaeometry. J Raman Spectrosc. 2016;47:4999–530.Google Scholar

  • [41]

    Jehlička J, Culka A, Bersani D, Vandenabeele P. Comparison of seven portable Raman spectrometers: beryl as a case study. J Raman Spectrosc. 2017;48:1289–99.CrossrefGoogle Scholar

  • [42]

    Zieman MA. In situ micro-Raman spectroscopy on minerals on-site in the grotto hall of the new palace, Park Sanssouci, in Potsdam. J Raman Spectrosc. 2006;37:1019–25.CrossrefGoogle Scholar

  • [43]

    Colomban P. Polymerisation degree and raman identification of ancient glasses used for jewellery, ceramics enamels and mosaics. J Non-Crystalline Solids. 2003a;323:180–7.CrossrefGoogle Scholar

  • [44]

    Colomban P, Prinsloo LC. Optical spectroscopy of silicates and glasses. In: Yarwood J, Douthwaite R, Duckett S, editor(s). Spectroscopic properties of inorganic and organometallic chemistry Vol. 40. Cambridge: RSC Publishing, 2009:128–50.Google Scholar

  • [45]

    Colomban P, Slodzyck A. Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials. Opt Mater. 2009;31:1759–63.CrossrefGoogle Scholar

  • [46]

    Colomban P. Pottery, glass and enamelled artefacts: how to extract information on their manufacture technology, origin and age? ch. 8. In: Edwards H, Vandenabeele P, editor(s). Analytical archaeometry: selected topics. Cambridge: The Royal Society of Chemistry, 2012b:247–70.Google Scholar

  • [47]

    Colomban P, Paulsen O. Non-destructive determination of the structure and composition of glazes by Raman spectroscopy. J Am Ceram Soc. 2005;88:390–5.CrossrefGoogle Scholar

  • [48]

    Colomban P, Milande V. On-site Raman analysis of the earliest known Meissen porcelain and stoneware. J Raman Spectrosc. 2006;37:606–13.CrossrefGoogle Scholar

  • [49]

    Labet V, Colomban P. Vibrational properties of silicates: a cluster model able to reproduce the effect of “SiO4” polymerization on Raman intensities. J Non-Crystalline Solids. 2013;370:10–7.CrossrefGoogle Scholar

  • [50]

    Colomban P. On-site Raman identification and dating of ancient glasses: procedures and tools. J Cult Her. 2008;9:e55–60.CrossrefGoogle Scholar

  • [51]

    Joseph E, Prati S, Sciutto G, Ioele M, Santopadre P, Mazzeo R. Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterisation of painting cross-section. Anal Bioanal Chem. 2010;396:899–910.CrossrefGoogle Scholar

  • [52]

    Manfredi M, Barberis E, Rava A, Robotti E, Gosetti F, Marengo E. Portable diffuse reflectance infrared Fourier transform (DRIFT) technique for the non-invasive identification of canvas ground: IR reflectance collection. Anal Methods. 2015;7:2313–22.CrossrefGoogle Scholar

  • [53]

    Ricci C, Bloxham S, Kazarian SG. ATR-FTIR imaging of albumen photographic prints. J Cult Herit. 2007;8:387–95.CrossrefGoogle Scholar

  • [54]

    Badea GI, Caggiani MC, Colomban P, Mangone A, Teodor ED, Teodor ES, et al. FT-Raman and statistical analysis on thermally altered samples of amber. Appl Spectrosc. 2015;69:1457–63.CrossrefPubMedGoogle Scholar

  • [55]

    Asquier M, Colomban P, Milande V. Raman and Infrared analysis of glues used for pottery conservation treatment. J Raman Spectrosc. 2009;40:1641–4.CrossrefGoogle Scholar

  • [56]

    Daher C, Paris C, Le Hô A-S, Bellot-Gurlet L, Reggert M. Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures. Talanta. 2013;115:540–7.CrossrefPubMedGoogle Scholar

  • [57]

    Daher C, Paris C, Le Hô A-S, Bellot-Gurlet L, Echard J-P. A joint use of Raman and infrared spectroscopies for the identification of natural organic media used in ancient varnishes. J Raman Spectrosc. 2010;41:1204–9.Google Scholar

  • [58]

    Colomban P, Mancini D. Lacquerware pigments identification with fixed and mobile Raman microspectrometer: a potential technique to differentiate original/fake artworks. Arts. 2013;2:111–23.CrossrefGoogle Scholar

  • [59]

    Gourrier A, Chadefaux C, Lemaitre E, Bellot-Gurlet L, Reynolds M, Burghammer M, et al. Nanoscale modifications in the early heating stages of bone are heterogeneous at the microstructural scale. PLoS One. 2017;12:e0176–9.Google Scholar

  • [60]

    Maia LF, Fleury BG, Lages BG, Barbosa JP, Pinto AC, Castro HV, et al. Identification of reddish pigments in octocorals by Raman spectroscopy. J Raman Spectrosc. 2011;42:653–8.CrossrefGoogle Scholar

  • [61]

    Fuerst S, Mueller K, Gianni L, Paris C, Bellot-Gurlet L, Pare CFE, et al. Raman investigations to identify Corallium rubrum in iron age jewelry and ornaments. Minerals. 2016;6:56.CrossrefGoogle Scholar

  • [62]

    Soualmia F, Touhar SA, Guo L, Xu Q, Garland M, Colomban P, et al. Amino-methyl coumarin as a potential SERS@Ag probe for the evaluation of protease activity and inhibition. J Raman Spectrosc. 2017;48:82–8.CrossrefGoogle Scholar

  • [63]

    Guineau B, Guichard V., ICOM Committee for Conservation: 8th Triennial Meeting, Preprints, Vol. 2, The Getty Conservation Institute, Marina del Rey, CA, (1987) p. 659.Google Scholar

  • [64]

    Canamares MV, Garcia-Ramos JV, Domingo C, Sanchez-Cortes SJ. Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticles. J Raman Spectrosc. 2004;35:921–7.CrossrefGoogle Scholar

  • [65]

    Shadi IT, Chowdhry BZ, Snowden MJ, Withnall R. Semi-quantitative analysis of indigo by surface enhanced resonance Raman spectroscopy (SERRS) using silver colloids. Spectrochim Acta Part. 2003;59:2213–20.CrossrefGoogle Scholar

  • [66]

    Leona M, Stenger J, Ferloni E. Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc. 2006;37:981–92.CrossrefGoogle Scholar

  • [67]

    Lee PC, Meisel D. Adsorption and surface-enhanced raman of dyes on Silver and Gold sols. J Phys Chem. 1982;86:3391–5.CrossrefGoogle Scholar

  • [68]

    Murcia-Mascaros S, Domingo C, Sanchez-Cortes S, Canamares MV, Garcia-Ramos JV. Spectroscopic identification of alizarin in a mixture of organic red dyes by incorporation in Zr-Ormosil. J Raman Spectrosc. 2005;36:420–6.CrossrefGoogle Scholar

  • [69]

    Colomban P. Structure of Oxide gels and glasses by IR and Raman scattering: I. Aluminas. J Mater Sci. 1989;24:3002–10.CrossrefGoogle Scholar

  • [70]

    Canamares MV, Garcia-Ramos JV, Sanchez-Cortes S, Castillejo M, Oujja M. Comparative SERS effectiveness of silver nanoparticles prepared by different methods: A study of the enhancement factor and the interfacial properties. J Colloid Interface Sci. 2008;326:103–9.CrossrefPubMedGoogle Scholar

  • [71]

    Jurasekova Z, Del Puerto E, Bruno G, Garcia-Ramos JV, Sanchez-Cortes S, Domingo C. Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J Raman Spectrosc. 2010;41:1455–61.CrossrefGoogle Scholar

  • [72]

    Gui OM, Falamas A, Barbu-Tudoran L, Aluas M, Giambra B, Cinta PS. Surface-enhanced Raman scattering (SERS) and complementary techniques applied for the investigation of an Italian cultural heritage canvas. J Raman Spectrosc. 2013;44:277–82.CrossrefGoogle Scholar

  • [73]

    Van Elsande E, Lecomte S, Le Ho A-S. Micro-Raman spectroscopy (MRS) and surface-enhanced Raman scattering (SERS) on organic colourants in archaeological pigments. J Raman Spectrosc. 2008;39:1001–6.CrossrefGoogle Scholar

  • [74]

    Daher C, Drieu L, Bellot-Gurlet L, Percot A, Paris C, Le Ho A-S. Combined approach of FT-Raman, SERS and IR micro-ATR spectroscopies to enlighten ancient technologies of painted and varnished works of art. J Raman Spectrosc. 2014;45:1207–14.CrossrefGoogle Scholar

  • [75]

    Brosseau CL, Casadio F, Van Duyne RP. Revealing the invisible: using surface-enhanced Raman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies. J Raman Spectrosc. 2011;42:1305–10.CrossrefGoogle Scholar

  • [76]

    Doherty B, Brunetti BG, Sgamellotti A, Miliani C. A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J Raman Spectrosc. 2011;42:1932–8.CrossrefGoogle Scholar

  • [77]

    Doherty B, Presciutti F, Sgamellotti A, Brunetti BG, Miliani C. Monitoring of optimized SERS active gel substrates for painting and paper substrates by unilateral NMR profilometry. J Raman Spectrosc. 2014;45:1153–9.CrossrefGoogle Scholar

  • [78]

    Leona M, Decuzzi P, Kubic TA, Gates G, Lombardi JR Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering. Anal Chem. 2011;83:3990–3.CrossrefPubMedGoogle Scholar

  • [79]

    Lofrumento C, Ricci M, Platania E, Becucci M, Castelluci E. SERS detection of red organic dyes in Ag-agar gel. J Raman Spectrosc. 2013;44:47–54.CrossrefGoogle Scholar

  • [80]

    Benedetti DP, Zhang J, Tague TJ, Jr, Lombardi JR, Leona M. In situ microanalysis of organic colorants by inkjet colloid deposition surface-enhanced Raman scattering. J Raman Spectrosc. 2014;45:123–7.CrossrefGoogle Scholar

  • [81]

    Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC. Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J Am Chem Soc. 2014;136:8677−84.CrossrefPubMedGoogle Scholar

  • [82]

    Colomban P, Treppoz F. Identification and differentiation of ancient and modern European porcelains by Raman macro and micro-spectroscopy. J Raman Spectrosc. 2001;32:93–102.CrossrefGoogle Scholar

  • [83]

    Raskovska A, Minceva-Sukarova B, Grupce O, Colomban P. Characterization of pottery from Republic of Macedonia II. Raman and infrared analyses of glazed pottery finds from Skopsko Kale. J Raman Spectrosc. 2010;41:431–9.Google Scholar

  • [84]

    Tanevska V, Colomban P, Minceva-Sukarova B, Grupce O. Characterization of pottery from the republic of Macedonia I: Raman analyses of byzantine glazed pottery excavated from Prilep and Skopje (12th–fourteenth century). J Raman Spectrosc. 2009;40:1240–8.CrossrefGoogle Scholar

  • [85]

    Caggiani MC, Mangone A, Mastrorocco F, Taccogna C, Laviano R, Giannossa LC. The tetris game of scientific investigation. increase the score embedding analytical techniques. Raw materials and production technology of Roman glasses from Pompeii. Microchem J. 2017;131:21–30.CrossrefGoogle Scholar

  • [86]

    Caggiani MC, Colomban P, Valotteau C, Mangone A, Cambon P. Mobile Raman spectroscopy analysis of ancient enamelled glass masterpieces. Anal Meth. 2013;5:4345–54.CrossrefGoogle Scholar

  • [87]

    Ricciardi P, Colomban P, Tournié A, Milande V. Nondestructive on-site identification of ancient glasses: genuine artefacts, embellished pieces or forgeries?. J Raman Spectrosc. 2009b;40:604–17.CrossrefGoogle Scholar

  • [88]

    Caggiani MC, Valotteau C, Colomban P. Inside the glassmaker technology: search of Raman criteria to discriminate between Emile Gallé and Philippe-Joseph Brocard enamels and pigment signatures. J Raman Spectrosc. 2014b;45:456–64.CrossrefGoogle Scholar

  • [89]

    Carter EA, Hargreaves MD, Kononenko N, Graham I, Edwards HGM, Swarbrick B, et al. Raman spectroscopy applied to understanding prehistoric obsidian trade in the pacific region. Vibr Spectrosc. 2009;50:116–24.CrossrefGoogle Scholar

  • [90]

    Teodor ES, Teodor ED, Virgolici M, Manea MM, Truica G, Litescu SC. Non-destructive analysis of amber artefacts from the prehistoric Cioclovina hoard (Romania). J Archaeolog Sci. 2010;37:2386–96.CrossrefGoogle Scholar

  • [91]

    Colomban P, De Laveaucoupet R, Milande V. On-site Raman spectroscopic analysis of Kutahya fritwares. J Raman Spectrosc. 2005;36:857–63.CrossrefGoogle Scholar

  • [92]

    Colomban P, Tournié A. On-site Raman identification and dating of ancient/modern stained glasses at the Sainte-Chapelle, Paris. J Cult Herit. 2007;8:242–56.CrossrefGoogle Scholar

  • [93]

    Caggiani MC, Colomban P. Testing of Raman spectroscopy as a non-invasive tool for the investigation of glass-protected pastels. J Raman Spectrosc. 2011a;42:790–8.CrossrefGoogle Scholar

  • [94]

    Schmidt CM, Walton MS, Trentelman K. Characterization of Lapis Lazuli pigments using a multitechnique analytical approach: implications for identification and geological provenancing. Anal Chem. 2009;81:8513–8.CrossrefPubMedGoogle Scholar

  • [95]

    Bacci M, Cucci C, Del Federico E, Ienco A, Jerschow A, Newman JM, et al. An integrated spectroscopic approach for the identification of what distinguishes Afghan lapis lazuli from others. Vib Spectrosc. 2009;49:80–3.CrossrefGoogle Scholar

  • [96]

    Bornhauser P, Bougeard D. Intensities of the vibrational spectra of siliceous zeolites by molecular dynamics calculations. II—Raman spectra. J Raman Spectrosc. 2001;32:279–85.CrossrefGoogle Scholar

  • [97]

    Ledé B, Demortier A, Gobeltz-Hautecoeur N, Lelieur J-P, Picquenard E, Duhayon C. Observation of the ν3 Raman band of S3- inserted into sodalite cages. J Raman Spectrosc. 2007;38:1461–8.CrossrefGoogle Scholar

  • [98]

    Del Federico E, Shofberger W, Schelvis J, Kapetanaki S, Tyne L, Jerschow A. Insight into framework destruction in ultramarine pigments. Inorg Chem. 2006;45:1270–6.PubMedCrossrefGoogle Scholar

  • [99]

    Gobeltz N, Demortier A, Lelieur JP, Duhayon C. Correlation between EPR, Raman and colorimetric characteristics of the blue ultramarine pigments. J Chem Soc Faraday Trans. 1998;94:677–81.CrossrefGoogle Scholar

  • [100]

    Caggiani MC, Acquafredda P, Colomban P, Mangone A. The source of blue colour of archaeological glass and glazes: the Raman spectroscopy/SEM-EDS answers. J Raman Spectrosc. 2014a;45:1251–9.CrossrefGoogle Scholar

  • [101]

    Colomban P. Lapis lazuli as unexpected blue pigment in Iranian Lâjvardina ceramics. J Raman Spectrosc. 2003b;34:420–3.CrossrefGoogle Scholar

  • [102]

    Defaria DLA, Silva SV, deOliveira MT Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc. 1997;28:873–8.CrossrefGoogle Scholar

  • [103]

    Froment F, Tournié A, Colomban P. Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J Raman Spectrosc. 2008;39:560–8.CrossrefGoogle Scholar

  • [104]

    Bikiaris D, Daniilia S, Sotiropoulou S, Katsimbiri O, Pavlidou E, Moutsatsou AP, et al. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece. Spectrochimica Acta Part. 1999;56:3–18.Google Scholar

  • [105]

    Smith EM, Shirey SB, Nestola F, Bullock ES, Wang J, Richardson SH, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science. 2016;354:1403–5.CrossrefPubMedGoogle Scholar

  • [106]

    Domínguez-Bella S. Archaeometry and cultural heritage: the contribution of mineralogy. In: Herrero JM, Vendrell M, editors. Seminarios SEM. Madrid: Sociedad Española de Mineralogía, 2012:5–28.Google Scholar

  • [107]

    Barone G, Bersani D, Jehlička J, Lottici PP, Mazzoleni P, Raneri S, et al. Nondestructive investigation on the 17-eighteenth centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. J Raman Spectrosc. 2015;46:989–95.CrossrefGoogle Scholar

  • [108]

    Olivares M, Tarrino A, Murelaga X, Baceta JI, Castro K, Etxebarria N. Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples. Spectrochimica Acta Part. 2009;73:492–7.CrossrefGoogle Scholar

  • [109]

    Schmidt P, Bellot-Gurlet L, Slodczyk A, Fröhlich F. A hitherto unrecognised band in the Raman spectra of silica rocks: influence of hydroxylated Si–O bonds (silanol) on the Raman moganite band in chalcedony and flint (SiO2). PHys Chem Miner. 2012;39:455–64.CrossrefGoogle Scholar

  • [110]

    Capel Ferrón C, León-Reina L, Jorge-Villar S, Compaña JM, Aranda MAG, López Navarrete JT, et al. Combined Raman spectroscopic and Rietveld analyses as a useful and nondestructive approach to studying flint raw materials at prehistoric archaeological sites. Archaeol Anthropol Sci. 2015;7:235–43.CrossrefGoogle Scholar

  • [111]

    Colomban P, Tournié A, Bellot-Gurlet L. Raman Identification of glassy silicates used in ceramic, glass and jewellry: a tentative differentiation guide. J Raman Spectrosc. 2006;37:841–52.CrossrefGoogle Scholar

  • [112]

    Chen T-H. A Raman spectroscopic study of heat-treated nephrite. PHase Transitions. 2008;81:205–16.CrossrefGoogle Scholar

  • [113]

    Smith DC. A review of the non-destructive identification of diverse geomaterials in the cultural heritage using different configurations of Raman spectroscopy. Geolo Soc London Specl Pubs. 2006;257:9–32.CrossrefGoogle Scholar

  • [114]

    Caggiani MC, Cosentino A, Mangone A. Pigments Checker version 3.0, a handy set for conservation scientists: a free online Raman spectra database. Microchem J. 2016;129:123–32.CrossrefGoogle Scholar

  • [115]

    Burgio L, Clark RJH. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta Part. 2001;57:1491–521.CrossrefGoogle Scholar

  • [116]

    Bell IM, Clark RJH, Gibbs PJ. Raman spectroscopic library of natural and synthetic pigments (pre- ̴1850 AD). Spectrochimica Acta Part. 1997;53:2159–79.CrossrefGoogle Scholar

  • [117]

    Bouchard M, Smith DC. Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta Part. 2003;59:2247–66.CrossrefGoogle Scholar

  • [118]

    Caggiani MC, Colomban P. Raman identification of strongly absorbing phases: the ceramic black pigments. J Raman Spectrosc. 2011b;42:839–84.CrossrefGoogle Scholar

  • [119]

    Miguel C, Claro A, Pereira GA, Muralha VSF, Melo MJ. A study on red lead degradation in a medieval manuscript Lorvão Apocalypse (1189). J Raman Spectrosc. 2009;40:1966–73.CrossrefGoogle Scholar

  • [120]

    Bouchard M, Gambardella A. Raman microscopy study of synthetic cobalt blue spinels used in the field of art. J Raman Spectrosc. 2010;41:1477–85.CrossrefGoogle Scholar

  • [121]

    Sánchez Del Río M, Picquart M, Haro-Poniatowski E, Van Elslande E, Uc VH. On the Raman spectrum of Maya blue. J Raman Spectrosc. 2006;37:1046–53.CrossrefGoogle Scholar

  • [122]

    Carrasco E, Oujja M, Sanz M, Marco JF, Castillejo M. X-ray and ion irradiation effects on azurite, malachite and alizarin pictorial models. Microchem J. 2018;137:381–91.CrossrefGoogle Scholar

  • [123]

    Ospitali F, Bersani D, Di Lonardo G, Lottici PP. ‘Green earths’: vibrational and elemental characterization of glauconites, celadonites and historical pigments. J Raman Spectrosc. 2008;39:1066–73.CrossrefGoogle Scholar

  • [124]

    Coccato A, Jehlička J, Moens L, Vandenabeele P. Raman spectroscopy for the investigation of carbon-based black pigments. J Raman Spectrosc. 2015;46:1003–15.CrossrefGoogle Scholar

  • [125]

    Rousaki A, Botteon A, Colombo C, Conti C, Matousek P, Moens L, et al. Development of defocusing micro-SORS mapping: study of a nineteenth century porcelain card. Anal Methods. 2017;9:6435–42.CrossrefGoogle Scholar

  • [126]

    Aramendia J, Gomez-Nubla L, Bellot-Gurlet L, Castro K, Paris C, Colomban P, et al. Protective ability index measurement through Raman quantification imaging to diagnose the conservation state of weathering steel structures. J Raman Spectrosc. 2014;45:1076–84.CrossrefGoogle Scholar

  • [127]

    Martens W, Frost RL, Kloprogge JT, Williams PA. A Raman spectroscopic study of the basic copper sulPHates-implications for copper corrosion and ‘bronze disease’. J Raman Spectrosc. 2003;34:145–51.CrossrefGoogle Scholar

  • [128]

    Frost RL. Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2003;59:1195–204.CrossrefGoogle Scholar

  • [129]

    Mccann LI, Trentelman K, Possley T, Golding B. Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. J Raman Spectrosc. 1999;30:121–32.CrossrefGoogle Scholar

  • [130]

    Ospitali F, Chiavari C, Martini C, Bernardi E, Passarini F, Robbiola L. The characterization of Sn-based corrosion products in ancient bronzes: a Raman approach. J Raman Spectrosc. 2012;43:1596–603.CrossrefGoogle Scholar

  • [131]

    Bertolotti G, Bersani D, Lottici PP, Alesiani M, Malcherek T, Schlüter J. Micro-Raman study of copper hydroxychlorides and other corrosion products of bronze samples mimicking archaeological coins. Anal Bioanal Chem. 2012;402:1451–7.PubMedCrossrefGoogle Scholar

  • [132]

    Bellot-Gurlet L, Neff D, Reguer S, Monnier J, Saheb M, Dillmann P. Raman studies of corrosion layers formed on archaeological irons in various media. J Nano Res. 2009;8:147–56.CrossrefGoogle Scholar

  • [133]

    Martina I, Wiesinger R, Jembrih-Simburger D, Schreiner M. Micro-Raman characterisation of silver corrosion products: instrumental set up and reference database. e-PS. 2012;9:1–8.Google Scholar

  • [134]

    Bongiorno V, Grosso P, Piccardo P, Magnani LG, Carnasciali MM. Virtues of Giambologna from Grimaldi chapel archaeometric characterisation part ii: ‘artistic’ and natural patinas. J Miner Met Mater Soc. 2016;68:2222–32.CrossrefGoogle Scholar

  • [135]

    Hayez V, Segato T, Hubin A, Terryn H. Study of copper nitrate-based patinas. J Raman Spectrosc. 2006;37:1211–20.CrossrefGoogle Scholar

  • [136]

    Kosec T, Ropret P, Legat A. Raman investigation of artificial patinas on recent bronze-part II: urban rain exposure. J. Raman Spectrosc. 2012;43:1578–86.Google Scholar

  • [137]

    Bongiorno V, Campodonico S, Caffara R, Piccardo P, Carnasciali MM. Micro-Raman spectroscopy for the characterization of artistic patinas produced on copper-based alloys. J Raman Spectrosc. 2012;43:1617–22.CrossrefGoogle Scholar

  • [138]

    Hayez V, Costa V, Guillaume J, Terryna H, Hubin A. Micro Raman spectroscopy used for the study of corrosion products on copper alloys: study of the chemical composition of artificial patinas used for restoration purposes. Analyst. 2005;130:550–6.CrossrefGoogle Scholar

  • [139]

    Ropret P, Kosec T. Raman investigation of artificial patinas on recent bronze – part I: climatic chamber exposure. J Raman Spectrosc. 2012;43:1578–86.CrossrefGoogle Scholar

  • [140]

    Freestone IC. The relationship between enamelling on ceramics and on glass in the Islamic world. Archaeometry. 2002;44:251–5.CrossrefGoogle Scholar

  • [141]

    Colomban P, Tournié A, Caggiani MC, Paris C. Pigments and enamelling/gilding technology of Mamluk mosque lamps and bottle. J Raman Spectrosc. 2012a;43:1975–84.CrossrefGoogle Scholar

  • [142]

    Greiff S, Schuster J. Technological study of enamelling on Roman glass: the nature of opacifying, decolourizing and fining agents used with the glass beakers from Lübsow (Lubieszewo, Poland). J Cult Herit. 2008;9:e27–32.CrossrefGoogle Scholar

  • [143]

    Fornacelli C, Colomban P, Turbanti Memmi I. Toward a Raman/FORS discrimination between art nouveau and contemporary stained glasses from CdSxSe1-x nanoparticles signatures. J Raman Spectrosc. 2015;46:1129–39.CrossrefGoogle Scholar

  • [144]

    Gedzevičiūtė V, Welter N, Schüssler U, Weiss C. Chemical composition and colouring agents of Roman mosaic and millefiori glass, studied by electron microprobe analysis and Raman microspectroscopy. Archaeolog Anthropol Sci. 2009;1:15–29.CrossrefGoogle Scholar

  • [145]

    Colomban P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. J Nano Res. 2009;8:109–32.CrossrefGoogle Scholar

  • [146]

    Simon G, Courty A, Colomban P, Meziane L, Lisiecki I. Low wavenumber Raman scattering of cobalt nanoparticles self-organized in 3D superlattices far from surface plasmon resonance. J Raman Spectrosc. 2016;47:248–51.CrossrefGoogle Scholar

  • [147]

    Colomban P, Tournié A, Ricciardi P. Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. J Raman Spectrosc. 2009;40:1949–55.CrossrefGoogle Scholar

  • [148]

    Colomban P, Schreiber H. Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectrosc. 2005;36:884–90.CrossrefGoogle Scholar

  • [149]

    Colomban P, Milande V, Le Bihan L. On-site Raman analysis of Iznik pottery glazes and pigments. J Raman Spectrosc. 2004a;35:527–35.CrossrefGoogle Scholar

  • [150]

    Simsek G, Colomban P, Casadio F, Bellot-Gurlet L, Faber KT, Zelleke G, et al. On-site identification of early Meissen Böttger red stoneware made at Meissen using portable XRF/Raman instruments: 2, glaze and gilding analyses. J Am Cer Soc. 2015;98:3006–13.CrossrefGoogle Scholar

  • [151]

    Kirmizi B, Colomban P, Blanc M. On-site analysis of Limoges enamels from sixteenth to nineteenth centuries: an attempt to differentiate between genuine artefacts and copies. J Raman Spectrosc. 2010;41:1240–7.CrossrefGoogle Scholar

  • [152]

    Maguregui M, Knuutinen U, Castro K, Madariaga JM. Raman spectroscopy as a tool to diagnose the impact and conservation state of Pompeian second and fourth style wall paintings exposed to diverse environments (house of marcus lucretius). J Raman Spectrosc. 2010;41:1400–9.CrossrefGoogle Scholar

  • [153]

    Edwards HGM, Farwell DW. The conservational heritage of wall paintings and buildings: an FT-Raman spectroscopic study of prehistoric, Roman, mediaeval and Renaissance lime substrates and mortars. J Raman Spectrosc. 2008;39:985–92.CrossrefGoogle Scholar

  • [154]

    Pérez-Alonso M, Castro K, Martinez-Arkarazo I, Angulo M, Olazabal MA, Madariaga JM. Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy. Anal Bioanal Chem. 2004;379:42–50.CrossrefPubMedGoogle Scholar

  • [155]

    Matousek P, Morris MD, Everall N, Clark IP, Towrie M, Draper ERC, et al. Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc. 2005b;59:1485–92.CrossrefGoogle Scholar

  • [156]

    Conti C, Colombo C, Matteini M, Realini M, Zerbi G. Micro-Raman mapping on polished cross sections: a tool to define the penetration depth of conservation treatment on cultural heritage. J Raman Spectrosc. 2010;41:1254–60.CrossrefGoogle Scholar

  • [157]

    Vandenabeele P, Moens L, Edwards HGM, Dams R. Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc. 2000a;31:509–17.CrossrefGoogle Scholar

  • [158]

    Schmidt CM, Trentelman KA. 1064 nm dispersive Raman micro-spectroscopy for the in-situ full paper identification of organic red colorants. e-PS. 2009;6:10–21.Google Scholar

  • [159]

    Schulte F, Brzezinka K-W, Lutzenberger K, Stege H, Panne U. Raman spectroscopy of synthetic organic pigments used in twentieth century works of art. J Raman Spectrosc. 2008;39:1455–63.CrossrefGoogle Scholar

  • [160]

    Scherrer NC, Zumbuehl S, Delavy F, Fritsch A, Kuehnen R. Synthetic organic pigments of the 20th and twenty-first century relevant to artist’s paints: raman spectra reference collection. Spectrochim Acta Part. 2009;73:505–24.CrossrefGoogle Scholar

  • [161]

    Whitney AV, Van Duyne RP, Casadio F. An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J Raman Spectrosc. 2006;37:993–1002.CrossrefGoogle Scholar

  • [162]

    Ricci M, Trombetta E, Castellucci E, Becucci M. On the SERS quantitative determination of organic dyes. J Raman Spectrosc. SI 2018;49:997–1005.CrossrefGoogle Scholar

  • [163]

    Edwards HGM, Farwell DW, Webster D. FT Raman microscopy of untreated natural plant fibres Spectrochimica Acta Part A. Mol Biomol Spectrosc. 1997;53:2383–92.CrossrefGoogle Scholar

  • [164]

    Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal Chim Acta. 2000b;407:261–74.CrossrefGoogle Scholar

  • [165]

    Brody RH, Edwards HGM, Pollard AM. A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim Acta Part. 2001;57:1325–38.CrossrefGoogle Scholar

  • [166]

    Vandenabeele P, Grimaldi DM, Edwards HGM, Moens L. Raman spectroscopy of different types of Mexican copal resins. Spectrochimica Acta Part. 2003;59:2221–9.CrossrefGoogle Scholar

  • [167]

    Jehlička J, Jorge VSE, Edwards HGM. Fourier transform Raman spectra of Czech and Moravian fossil resins from freshwater sediments. J Raman Spectrosc. 2004;35:761–7.CrossrefGoogle Scholar

  • [168]

    Moreno YM, Christensen DH, Nielsen OF. A NIR-FT-Raman spectroscopic study of amber. Asian J Spectrosc. 2000;4:49–56.Google Scholar

  • [169]

    Winkler W, Musso M, Kirchner EC. Fourier transform Raman spectroscopic data on the fossil resin siegburgite. J Raman Spectrosc. 2003;34:157–62.CrossrefGoogle Scholar

  • [170]

    Shen ZX, Yee SL, Tang TS, Qin L, Tang SH. Amber identification using micro-Raman spectroscopy. Asian J Spectrosc 1. 1997;1:127–33.Google Scholar

  • [171]

    Edwards HGM, Farwell DW, Jorge Villar SE. Raman microspectroscopic studies of amber resins with insect inclusions. Spectrochimica Acta Part. 2007a;68:1089–95.CrossrefGoogle Scholar

  • [172]

    Chiriu D, Ricci PC, Cappellini G. Raman characterization of XIV–XVI centuries Sardinian documents: inks, papers and parchments. Vibr Spectrosc. 2017;92:70–81.CrossrefGoogle Scholar

  • [173]

    Castro K, Pessanha S, Proietti N, Princi E, Capitani D, Carvalho ML, et al. Noninvasive and nondestructive NMR, Raman and XRF analysis of a blue coloured map from the seventeenth century. Anal Bioanal Chem. 2008;391:433–41.CrossrefGoogle Scholar

  • [174]

    El Bakkali A, Lamhasni T, Haddad M, Ait Lyazidi S, Sanchez-Cortes S, Del Puerto Nevado E. Non-invasive micro Raman, SERS and visible reflectance analyses of coloring materials in ancient Moroccan Islamic manuscripts. J Raman Spectrosc. 2013;44:114–20.CrossrefGoogle Scholar

  • [175]

    Bruni S, Caglio S, Guglielmi V, Poldi G. The joined use of n.i. spectroscopic analyses – FTIR, Raman, visible reflectance spectrometry and EDXRF – to study drawings and illuminated manuscripts. Appl Phys A. 2008;92:103–8.CrossrefGoogle Scholar

  • [176]

    Mannucci E, Pastorelli R, Zerbi G, Bottani CE, Facchini A. Recovery of ancient parchment: characterization by vibrational spectroscopy. J Raman Spectrosc. 2000;31:1089–97.CrossrefGoogle Scholar

  • [177]

    Edwards HGM, Farwell DW, Newton EM, Rull Perez F, Villar SJ. Application of FT-Raman spectroscopy to the characterisation of parchment and vellum, I; novel information for paleograPHic and historiated manuscript studies. Spectrochimica Acta Part. 2001b;57:1223–34.CrossrefGoogle Scholar

  • [178]

    Edwards HGM, Perez RF. Application of FT-Raman spectroscopy to the characterisation of parchment and vellum, II; effects of biodeterioration and chemical deterioration on spectral interpretation. J Raman Spectrosc. 2004;35:754–60.CrossrefGoogle Scholar

  • [179]

    Bicchieri M, Monti M, Piantanida G, Pinzari F, Sodo A. Non-destructive spectroscopic characterization of parchment documents. Vibr Spectrosc. 2011;55:267–72.CrossrefGoogle Scholar

  • [180]

    Bitossi G, Giorgi R, Mauro M, Salvadori B, Dei L. Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev. 2005;40:187–228.CrossrefGoogle Scholar

  • [181]

    Centeno SA. Identification of artistic materials in paintings and drawings by Raman spectroscopy: some challenges and future outlook. J Raman Spectrosc. 2016;47:9–15.CrossrefGoogle Scholar

  • [182]

    Casadio F, Daher C, Bellot-Gurlet L. Raman spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top Curr Chem. 2016;374 :62. DOI: .CrossrefGoogle Scholar

  • [183]

    Bicchieri M, Monti M, Piantanida G, Sodo A. All that is iron-ink is not always iron-gall!. J Raman Spectrosc. 2008;39:1074–8.CrossrefGoogle Scholar

  • [184]

    Lee AS, Otieno-Alego V, Creagh DC. Identification of iron-gall inks with near-infrared Raman microspectroscopy. J Raman Spectrosc. 2008;39:1079–84.CrossrefGoogle Scholar

  • [185]

    Lee AS, Mahon PJ, Creagh DC. Raman analysis of iron gall inks on parchment. Vib Spectrosc. 2006;41:170–5.CrossrefGoogle Scholar

  • [186]

    Brown KL, Clark RJH. Analysis on the pigmentary material on the vinland map and tartar relation by Raman Microprobe Spectroscopy. Anal Chem. 2002;74:3658–61.CrossrefPubMedGoogle Scholar

  • [187]

    Edwards HGM, Munshi T. Diagnostic Raman spectroscopy for the forensic detection of biomaterials and the preservation of cultural heritage. Anal Bioanal Chem. 2005;382:1398–406.PubMedCrossrefGoogle Scholar

  • [188]

    Bertoluzza A, Brasili P, Castrì L, Facchini F, Fagnano C, Tinti A. Preliminary results in dating human skeletal remains by Raman spectroscopy. J Raman Spectrosc. 1997;28:185–8.CrossrefGoogle Scholar

  • [189]

    Kirchner MT, Edwards HGM, Lucy D, Pollard AM. Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study. J Raman Spectrosc. 1997;28:171–8.CrossrefGoogle Scholar

  • [190]

    Mclaughlin G, Lednev IK. Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem. 2011;401:2511–8.CrossrefPubMedGoogle Scholar

  • [191]

    Edwards HGM, Farwell DW, De Faria DLA, Monteiro AMF, Afonso MC, De Blasis P, et al. Raman spectroscopic study of 3000-year-old human skeletal remains from a sambaqui, Santa Catarina, Brazil. J Raman Spectrosc. 2001a;32:17–22.CrossrefGoogle Scholar

  • [192]

    Gniadecka M, Wulf HC, Faurskov Nielsen O, Christensen DH, Hart Hansen JP. Fourier transform Raman spectroscopy of fifteenth century mummies from Qilakitsoq Greenland. J Raman Spectrosc. 1997;28:179–84.CrossrefGoogle Scholar

  • [193]

    Edwards HGM, Wilson AS, Nik Hassan NF, Davidson A, Burnett A. Raman spectroscopic analysis of human remains from a seventh century cist burial on Anglesey, UK. Anal Bioanal Chem. 2007b;387:821–8.CrossrefGoogle Scholar

  • [194]

    RRUFF.INFO http://rruff.info (accessed 27th February 2018)

  • [195]

    Lau D, Livett M, Prawer S. Application of surface-enhanced Raman spectroscopy (SERS) to the analysis of natural resins in artworks. J Raman Spectrosc. 2008;39:545–52.CrossrefGoogle Scholar

About the article

Published Online: 2018-09-20


Citation Information: Physical Sciences Reviews, Volume 3, Issue 11, 20180007, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0007.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
E. Grammatikakis, Kyriakidis, D. Demadis, Cabeza Diaz, and Leon-Reina
Heritage, 2019, Volume 2, Number 3, Page 2652
[2]
Roberta Di Febo, Lluís Casas, Jordi Rius, Riccardo Tagliapietra, and Joan Melgarejo
Minerals, 2019, Volume 9, Number 2, Page 113

Comments (0)

Please log in or register to comment.
Log in