Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

12 Issues per year

Online
ISSN
2365-659X
See all formats and pricing
More options …

Drug target prediction using chem- and bioinformatics

Rita C. Guedes
  • Research Institute for Medicines (iMed.Ulisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tiago Rodrigues
  • Corresponding author
  • Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-20 | DOI: https://doi.org/10.1515/psr-2018-0112

Abstract

The biological pre-validation of natural products (NPs) and their underlying frameworks ensures an unrivaled source of inspiration for chemical probe and drug design. However, the poor knowledge of their drug target counterparts critically hinders the broader exploration of NPs in chemical biology and molecular medicine. Cutting-edge algorithms now provide powerful means for the target deconvolution of phenotypic screen hits and generate motivated research hypotheses. Herein, we present recent progress in artificial intelligence applied to target identification that may accelerate future NP-inspired molecular medicine.

Keywords: machine intelligence; cheminformatics; chemical biology; target identification; natural products

References

  • [1]

    Rodrigues T. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. Org Biomol Chem. 2017;15:9275–82.Google Scholar

  • [2]

    Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8:531–41.Google Scholar

  • [3]

    Mullard A. 2017 FDA drug approvals. Nat Rev Drug Discov. 2018;17:81–5.Google Scholar

  • [4]

    Reker D, Rodrigues T, Schneider P, Schneider G. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci USA. 2014;111:4067–72.Google Scholar

  • [5]

    Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–90.Google Scholar

  • [6]

    Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;25:1110–1.Google Scholar

  • [7]

    Maruca A, Ambrosio FA, Lupia A, Romeo I, Rocca R, Moraca F, et al. Computer-based techniques for lead identification and optimization I: Basics. Phys Sci Rev 2018. DOI: . Forthcoming.CrossrefGoogle Scholar

  • [8]

    Lupia A, Moraca F, Maruca A, Ambrosio FA, Catalano R, Romeo I, et al. Computer-based techniques for lead identification and optimization II: advanced search methods. Phys Sci Rev 2018. DOI: . Forthcoming.CrossrefGoogle Scholar

  • [9]

    Wetzel S, Bon RS, Kumar K, Waldmann H. Biology-oriented synthesis. Angew Chem Int Ed. 2011;50:10800–26.Google Scholar

  • [10]

    Van Hattum H, Waldmann H. Biology-oriented synthesis: harnessing the power of evolution. J Am Chem Soc. 2014;136:11853–9.Google Scholar

  • [11]

    Baran PS. Natural product total synthesis: as exciting as ever and here to stay. J Am Chem Soc. 2018;140:4751–5.Google Scholar

  • [12]

    Laraia L, Waldmann H. Natural product inspired compound collections: evolutionary principle, chemical synthesis, phenotypic screening, and target identification. Drug Discov Today Technol. 2017;23:75–82.Google Scholar

  • [13]

    Parker CG, Kuttruff CG, Galmozzi A, Jorgensen L, Yen CH, Hermanson DJ, et al. Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of actinic keratosis drugs. ACS Cent Sci. 2017;3:1276–85Google Scholar

  • [14]

    Schneider G. Virtual screening: an endless staircase? Nat Rev Drug Discov. 2010;9:273–6.Google Scholar

  • [15]

    Singh G, Schulthess D, Hughes N, Vannieuwenhuyse B, Kalra D. Real world big data for clinical research and drug development. Drug Discov Today. 2018;23:652–60.Google Scholar

  • [16]

    Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20:318–31.Google Scholar

  • [17]

    Henkel T, Brunne RM, Muller H, Reichel F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed. 1999;38:643–7.Google Scholar

  • [18]

    Stahura FL, Godden JW, Xue L, Bajorath J. Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J Chem Inf Comput Sci. 2000;40:1245–52.Google Scholar

  • [19]

    Wermuth C-G, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry (IUPAC recommendations 1997). Annu Rep Med Chem. 1998;33:385–95.Google Scholar

  • [20]

    Seidel T, Ibis G, Bendix F, Wolber G. Strategies for 3D pharmacophore-based virtual screening. Drug Discov Today Technol. 2010;7:e203–70.Google Scholar

  • [21]

    Langer T, Wolber G. Pharmacophore definition and 3D searches. Drug Discov Today Technol. 2004;1:203–7.Google Scholar

  • [22]

    Schneider G, Schneider P, Renner S. Scaffold-hopping: how far can you jump? QSAR Comb Sci. 2006;25:1162–71.Google Scholar

  • [23]

    Gasteiger J, Rudolph C, Sadowski J. Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Method. 1990;3:536–47.Google Scholar

  • [24]

    Chen I-J, Foloppe N. Conformational sampling of drug like molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model. 2008;48:1773–91.Google Scholar

  • [25]

    Rupp M, Bauer MR, Wilcken R, Lange A, Reutlinger M, Boeckler FM, et al. Machine learning estimates of natural product conformational energies. PLoS Comput Biol. 2014;10:1003400.Google Scholar

  • [26]

    Renner S, Schwab CH, Gasteiger J, Schneider G. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. J Chem Inf Model. 2006;46:2324–32.Google Scholar

  • [27]

    Zhang Q, Muegge I. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem. 2006;49:1536–48.Google Scholar

  • [28]

    Hawkins PC, Skillman AG, Nicholls A. Comparison of shapematching and docking as virtual screening tools. J Med Chem. 2007;50:74–82.Google Scholar

  • [29]

    Sadowski J, Gasteiger J, Klebe G. Comparison of automatic threedimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci. 1994;34:1000–8.Google Scholar

  • [30]

    Güner O, Clement O, Kurogi Y. Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr Med Chem. 2004;11:2991–3005.Google Scholar

  • [31]

    Molecular Operating Environment (MOE) 2012.10 (2012).Google Scholar

  • [32]

    McGarrah DB, Judson RS. Analysis of the genetic algorithm method of molecular conformation determination. J Comput Chem. 1993;14:1385–95.Google Scholar

  • [33]

    Saunders M. Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum. J Am Chem Soc. 1987;109:3150–2.Google Scholar

  • [34]

    Saunders M. Stochastic search for the conformations of bicyclic hydrocarbons. J Comput Chem. 1989;10:203–8.Google Scholar

  • [35]

    Chang G, Guida WC, Still WC. An internal coordinate Monte Carlo method for searching conformational space. J Am Chem Soc. 1989;111:4379–86.Google Scholar

  • [36]

    Wolber G, Seidel T, Bendix F, Langer T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today. 2008;13:23–9.Google Scholar

  • [37]

    Catalyst, Accelrys Inc., http://accelrys.com

  • [38]

    Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening fi lters. J Chem Inf Model. 2005;45:160–9.Google Scholar

  • [39]

    Dixon SL, Smondyrev AM, Rao SR. PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des. 2006;67:370–2.Google Scholar

  • [40]

    Lower M, Geppert T, Schneider P, Hoy B, Wessler S, Schneider G. Inhibitors of helicobacter pylori protease HtrA found by ‘virtual ligand’ screening combat bacterial invasion of epithelia. PLoS One. 2011;6:17986Google Scholar

  • [41]

    Rodrigues T, Moreira R, Gut J, Rosenthal PJ, O'Neill PM, Biagini GA, et al. Identification of new antimalarial leads by use of virtual screening against cytochrome bc1. Bioorg Med Chem. 2011;19:6302–8Google Scholar

  • [42]

    Vuorinen A, Nashev LG, Odermatt A, Rollinger JM, Schuster D. Pharmacophore model refinement for 11beta-hydroxysteroid dehydrogenase inhibitors: search for modulators of intracellular glucocorticoid concentrations. Mol Inf. 2014;33:15–25.Google Scholar

  • [43]

    Bauer J, Waltenberger B, Noha SM, Schuster D, Rollinger JM, Boustie J, et al. Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem. 2012;7:2077–81Google Scholar

  • [44]

    Rollinger JM, Schuster D, Danzl B, Schwaiger S, Markt P, Schmidtke M, et al. In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens. Planta Med. 2009;75:195–204Google Scholar

  • [45]

    Fakhrudin N, Ladurner A, Atanasov AG, Heiss EH, Baumgarter L, Markt P, et al. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol Pharmacol. 2010;77:559–66Google Scholar

  • [46]

    Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgarter L, et al. Honokiol: a non-adipogenic PPARgamma agonist from nature. Biochim Biophys Acta. 2013;1830:4813–9Google Scholar

  • [47]

    Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct. 2003;32:335–73.Google Scholar

  • [48]

    Bertoldo JB, Rodrigues T, Dunsmore L, Aprile FA, Marques MC, Rosado LA, et al. A water-bridged cysteine-cysteine redox regulation mechanism in bacterial protein tyrosine phosphatases. Chem. 2017;3:665–77Google Scholar

  • [49]

    Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73Google Scholar

  • [50]

    Brik A, Wong CH. HIV-1 protease: mechanism and drug discovery. Org Biomol Chem. 2003;1:5–14.Google Scholar

  • [51]

    Cappel D, Sherman W, Beuming T. Calculating water thermodynamics in the binding site of proteins - applications of WaterMap to drug discovery. Curr Top Med Chem. 2017;17:2586–98.Google Scholar

  • [52]

    Ladbury JE. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem Biol. 1996;3:973–80.Google Scholar

  • [53]

    Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol. 2008;18:178–84.Google Scholar

  • [54]

    Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins. 2001;43:217–26.Google Scholar

  • [55]

    Do QT, Lamy C, Renimel I, Sauvan N, Andre P, Himbert F, et al. Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin. Planta Med. 2007;73:1235–40Google Scholar

  • [56]

    Brown RD, Martin YC. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comp Sci. 1997;37:1–9.Google Scholar

  • [57]

    Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25:197–206Google Scholar

  • [58]

    Bajusz D, Racz A, Heberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminf. 2015;7:20.Google Scholar

  • [59]

    Sheridan RP, Kearsley SK. Why do we need so many chemical similarity search methods? Drug Discov Today. 2002;7:903–11.Google Scholar

  • [60]

    Bender A, Jenkins JL, Scheiber J, Sukuru SC, Glick M, Davies JW. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model. 2009;49:108–19Google Scholar

  • [61]

    Sa MS, de Menezes MN, Krettli AU, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R, et al. Antimalarial activity of physalins B, D, F, and G. J Nat Prod. 2011;74:2269–72Google Scholar

  • [62]

    Poroikov V, Filimonov D, Lagunin A, Gloriozova T, Zakharov A. PASS: identification of probable targets and mechanisms of toxicity. SAR QSAR Environ Res. 2007;18:101–10.Google Scholar

  • [63]

    Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000;16:747–8.Google Scholar

  • [64]

    Filimonov D, Poroikov V, Borodina Y, Gloriozova T. Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J Chem Inf Comp Sci. 1999;39:666–70.Google Scholar

  • [65]

    Lagunin A, Filimonov D, Poroikov V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des. 2010;16:1703–17.Google Scholar

  • [66]

    Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, et al. NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res. 2018;46:D1217–D1222Google Scholar

  • [67]

    Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature. 2018;559:547–55.Google Scholar

  • [68]

    Merk D, Friedrich L, Grisoni F, Schneider G. De novo design of bioactive small molecules by artificial intelligence. Mol Inf. 2018;37:1700153.Google Scholar

  • [69]

    Kirchmair J, Williamson MJ, Afzal AM, Tyzack JD, Choy AP, Howlett A, et al. FAst MEtabolizer (FAME): A rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. J Chem Inf Model. 2013;53:2896–907Google Scholar

  • [70]

    Tian S, Wang J, Li Y, Xu X, Hou T. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol Pharm. 2012;9:2875–86.Google Scholar

  • [71]

    Segler MH, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555:604–10.Google Scholar

  • [72]

    Mayr A, Klaumbauer G, Unterthiner T, Steijaert M, Wegner JK, Cuelemans H, et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem Sci. 2018;9:5441–51Google Scholar

  • [73]

    Reutlinger M, Koch CP, Reker D, Todoroff N, Schneider P, Rodrigues T, et al. Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for ‘orphan’ molecules. Mol Inf. 2013;32:133–8Google Scholar

  • [74]

    Schneider P, Schneider G. Collection of bioactive reference compounds for focused library design. QSAR Comb Sci. 2003;22:713–8.Google Scholar

  • [75]

    Rodrigues T, Reker D, Kunze J, Schneider P, Schneider G. Revealing the macromolecular targets of fragment-like natural products. Angew Chem Int Ed. 2015;54:10516–20.Google Scholar

  • [76]

    Reker D, Perna AM, Rodrigues T, Schneider P, Reutlinger M, Monch B, et al. Revealing the macromolecular targets of complex natural products. Nat Chem. 2014;6:1072–8Google Scholar

  • [77]

    Schneider G, Reker D, Chen T, Hauenstein K, Schneider P, Altmann KH, et al. Deorphaning the macromolecular targets of the natural anticancer compound doliculide. Angew Chem Int Ed. 2016;55:12408–11Google Scholar

  • [78]

    Rodrigues T, Sieglitz F, Somovilla VJ, Cal PM, Galione A, Corzana F, et al. Unveiling (-)-englerin A as a modulator of L-type calcium channels. Angew Chem Int Ed. 2016;55:11077–81Google Scholar

  • [79]

    Schneider P, Schneider G. De-orphaning the marine natural product (+/-)-marinopyrrole A by computational target prediction and biochemical validation. Chem Commun. 2017;53:2272–4.Google Scholar

  • [80]

    Schneider P, Schneider G. A computational method for unveiling the target promiscuity of pharmacologically active compounds. Angew Chem Int Ed. 2017;56:11520–4.Google Scholar

  • [81]

    Rodrigues T, Werner M, Roth J, da Cruz EHG, Marques MC, Akkapeddi P, et al. Machine intelligence decrypts β-lapachone as an allosteric 5- lipoxygenase inhibitor. Chem Sci. 2018;9. DOI: CrossrefGoogle Scholar

  • [82]

    Robke L, Rodrigues T, Schroder P, Foley DJ, Bernardes GJL, Laraia L, et al. Discovery of 2,4-dimethoxypyridines as novel autophagy inhibitors. Tetrahedron. 2018;74:4531–7. DOI: CrossrefGoogle Scholar

  • [83]

    Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016;21:204–7.Google Scholar

  • [84]

    Wassermann AM, Lounkine E, Hoepfner D, King FJ, Studer C, Peltier JM, et al. Dark chemical matter as a promising starting point for drug lead discovery. Nat Chem Biol. 2015;11:958–66Google Scholar

About the article

Published Online: 2018-11-20


Citation Information: Physical Sciences Reviews, Volume 3, Issue 12, 20180112, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0112.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in