Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Economic aspects of metals recover

Daria Wieczorek
  • Corresponding author
  • Poznan University of Economics and Business, Faculty of Commodity Science, Department of Technology and Instrumental Analysis, al. Niepodległości 10, 61-875Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dobrawa Kwaśniewska
  • Poznan University of Economics and Business, Faculty of Commodity Science, Department of Technology and Instrumental Analysis, al. Niepodległości 10, 61-875Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-09 | DOI: https://doi.org/10.1515/psr-2018-0027

Abstract

One of the modern economy models is circular economy in which wastes should be considered as resource and used in an efficient and sustainable way. This also concerns to metals included in scraps. However, the need for metal recovery from waste is not only the result of the latest economic trends but also the result of large and constantly changing demand for metals. Shrinking natural sources of metals, concentrations of ores in small number of countries in the world and resulting from this dependence on import, geopolitical situation, new technologies demands are only a few most important determinants that have been changing the structure of the metal market over years. In this chapter, authors focused on the presentation of economic aspects of metal recovery from various sources. The chapter presents the characteristic of metal market elements (supply, demand and price) and changes that took place over decades, underlining the structure of precious and highly desirable metal market elements. Balance between the demand and supply ensures price stability and rationalizes inflation. However, growing demand on many means that secure supply chains, such as recycling and material recovery, are essential to ensure continuity in the supply chain and guarantee unrestricted technological progress and innovation. The data included in this chapter presents also the concentration of different metals and group of metals in wastes pointing that recycling of waste can become one of the possibilities of acquiring missing and critical metals. Metal-laden wastes include a few groups: waste electrical and electronic equipments, catalysts of different application, introduced on chemical, petrochemical or automotive market, galvanic wastes and wastewaters. The profitability assessment of recycling processes is very complicated. Nevertheless cited data shows that profitability of recovery depends on the metal analyzed and the type of waste.

It must be underline that an optimized management of wastes is of a great importance for the global economy and allow achieving not only economic but also environmental and social benefits.

Keywords: circular economy; metal market elements; metal recovery

References

  • [1]

    Rubin RS, de Castro MA, Brandão D, Schalch V, Ometto AR. Utilization of life cycle assessment methodology to compare two strategies for recovery of copper from printed circuit board scrap. J Clean Prod. 2014;64:297–305.CrossrefGoogle Scholar

  • [2]

    Bigum M, Brogaard L, Christensen TH. Metal recovery from high-grade WEEE: a life cycle assessment. J Hazard Mater. 2012;207:8–14.PubMedGoogle Scholar

  • [3]

    Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–32.CrossrefPubMedGoogle Scholar

  • [4]

    Alsheyab M, Kusch S. End of life of electronic communication devices in the context of strategies to decouple resources use from economic growth. In: Conference of Informatics and Management Sciences, 2013:133–37.Google Scholar

  • [5]

    Cucchiella F, D’Adamo I, Gastaldi M. Sustainable management of waste-to-energy facilities. Renew Sust Energ Rev. 2014;33:719–28.CrossrefGoogle Scholar

  • [6]

    Norgate TE, Rankin WJ. The role of metals in sustainable development. Green Process. 2002;49–55.Google Scholar

  • [7]

    Wojciechowski A, Dyduch J, Lankiewicz K. Odzysk metali z elektroniki samochodowej i sprzętu AGD. Logistyka. 2014;6:11259–67.Google Scholar

  • [8]

    Willner J, Fornalczyk A. Złom elektroniczny jako źródło metali szlachetnych. Przem Chem. 2012;91(4):517–22.Google Scholar

  • [9]

    Cucchiella F, D’Adamo I, Koh SL, Rosa P. Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew Sust Energ Rev. 2015;51:263–72.CrossrefGoogle Scholar

  • [10]

    Li J, Liu L, Zhao N, Yu K, Zheng L. Regional or global WEEE recycling. Where to go?. Waste Manage. 2013;33(4):923–34.CrossrefGoogle Scholar

  • [11]

    Robinson BH. E-waste: an assessment of global production and environmental impacts. Sci Total Environ. 2009;408(2):183–91.PubMedCrossrefGoogle Scholar

  • [12]

    Rao CR, Reddi GS. Platinum group metals (PGM); occurrence, use and recent trends in their determination. TrAC-Trend Anal Chem. 2000;19(9):565–86.CrossrefGoogle Scholar

  • [13]

    Glaister BJ, Mudd GM. The environmental costs of platinum–PGM mining and sustainability: is the glass half-full or half-empty?. Miner Eng. 2010;23(5):438–50.CrossrefGoogle Scholar

  • [14]

    Commodity statistics and information (Accessed September 28. 2017 at https://minerals.usgs.gov/minerals/pubs/commodity/)

  • [15]

    Zhang S, Ding Y, Liu B, Chang CC. Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manage. 2017;66:113–27.Google Scholar

  • [16]

    Smakowski T, Ney R, Galos K, Eds. Bilans gospodarki surowcami mineralnymi Polski i świata 2012. Instytut Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. Pracownia Polityki Surowcowej. 2014. (in polish).Google Scholar

  • [17]

    Swain B. Recovery and recycling of lithium: a review. Sep Purif Technol. 2017;172:388–403.CrossrefGoogle Scholar

  • [18]

    Boundy T, Boyton M, Taylor P. Attrition scrubbing for recovery of indium from waste liquid crystal display glass via selective comminution. J Clean Prod. 2017;154:436–44.CrossrefGoogle Scholar

  • [19]

    Fu X, Ueland SM, Olivetti E. Econometric modeling of recycled copper supply. Resour Conserv Recy. 2017;122:219–26.CrossrefGoogle Scholar

  • [20]

    Singer DA. Future copper resources. Ore Geol Rev. 2017;86:271–79.CrossrefGoogle Scholar

  • [21]

    Kabwe E, Yiming W. Analysis of Copper’s market and price-focus on the last decade’s change and its future trend. Inter J Sci Tech Res. 2015;4(10):54–61.Google Scholar

  • [22]

    Rombach G. Raw material supply by aluminium recycling–efficiency evaluation and long-term availability. Acta Mater. 2013;61(3):1012–20.CrossrefGoogle Scholar

  • [23]

    Sverdrup HU, Ragnarsdottir KV, Koca D. Aluminium for the future: modelling the global production, market supply, demand, price and long term development of the global reserves. Resour Conserv Recy. 2015;103:139–54.CrossrefGoogle Scholar

  • [24]

    Grimaud G, Perry N, Laratte B. Life cycle assessment of aluminium recycling process: case of shredder cables. Procedia CIRP. 2016;48:212–18.CrossrefGoogle Scholar

  • [25]

    Jirang CU, Roven HJ. Recycling of automotive aluminum. T Nonferr Metals Soc China. 2010;20(11):2057–63.CrossrefGoogle Scholar

  • [26]

    Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, et al. Recycling of rare earths: a critical review. J Clean Prod. 2013;51:1–22.CrossrefGoogle Scholar

  • [27]

    Charalampides G, Vatalis KI, Apostoplos B, Ploutarch-Nikolas B. Rare earth elements: industrial applications and economic dependency of Europe. Procedia Econ Financ. 2015;24:126–35.CrossrefGoogle Scholar

  • [28]

    Jha MK, Kumari A, Panda R, Kumar JR, Yoo K, Lee JY. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy. 2016;165:2–26.CrossrefGoogle Scholar

  • [29]

    Klossek P, Kullik J, van den Boogaart KG. A systemic approach to the problems of the rare earth market. Resour Policy. 2016;50:131–40.CrossrefGoogle Scholar

  • [30]

    Current and historical commodity and metal prices. Available at: http://www.infomine.com/investment/metal-prices/. Accessed: 28 Sept 2017.

  • [31]

    Lehner T E&HS aspects on metal recovery from electronic scrap. In: IEEE International Symposium on Electronics and the Environment, 2003:318–22.Google Scholar

  • [32]

    Fornalczyk A. Industrial catalysts as a source of valuable metals. JAMME. 2012;55(2):864–68.Google Scholar

  • [33]

    Veglio F, Quaresima R, Fornari P, Ubaldini S. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning. Waste Manage. 2003;23(3):245–52.CrossrefGoogle Scholar

  • [34]

    Charles RG, Douglas P, Hallin IL, Matthews I, Liversage G. An investigation of trends in precious metal and copper content of RAM modules in WEEE: implications for long term recycling potential. Waste Manage. 2017;60:505–20.CrossrefGoogle Scholar

  • [35]

    Ghodrat M, Rhamdhani MA, Brooks G, Rashidi M, Samali B. A thermodynamic-based life cycle assessment of precious metal recycling out of waste printed circuit board through secondary copper smelting. Environ Develop. 2017;24:36–49.CrossrefGoogle Scholar

  • [36]

    UK Report on Waste from Electrical and Electronic Equipment. http://icer.org.uk/. Accessed: 28 Sept 2017.

  • [37]

    Hagelüken C, Corti CW. Recycling of gold from electronics: cost-effective use through ‘design for recycling’. Gold Bull. 2010;43(3):209–20.CrossrefGoogle Scholar

  • [38]

    Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater. 2008;158(2):228–56.CrossrefPubMedGoogle Scholar

  • [39]

    Cieszyńska A. Waste Electronic and Electrical Equipment (WEEE)-scraps or valuable source of precious metals. Pol J Comm Sci. 2016;49 :43–54.Google Scholar

  • [40]

    Diaz LA, Lister TE, Parkman JA, Clark GG. Comprehensive process for the recovery of value and critical materials from electronic waste. J Clean Prod. 2016;125:236–44.CrossrefGoogle Scholar

  • [41]

    Tunsu C, Petranikova M, Gergorić M, Ekberg C, Retegan T. Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy. 2015;156:239–58.CrossrefGoogle Scholar

  • [42]

    Mallampati SR, Lee BH, Mitoma Y, Simion C. Sustainable recovery of precious metals from end-of-life vehicles shredder residue by a novel hybrid ball-milling and nanoparticles enabled froth flotation process. J Clean Prod. 2018:171:66–75.CrossrefGoogle Scholar

  • [43]

    Khaliq A, Rhamdhani MA, Brooks G, Masood S. Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources. 2014;3(1):152–79.CrossrefGoogle Scholar

  • [44]

    Yamane LH, de Moraes VT, Espinosa DC, Tenório JA. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers. Waste Manage. 2011;31(12):2553–58.CrossrefGoogle Scholar

  • [45]

    Petter PM, Veit HM, Bernardes AM. Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manage. 2014;34(2):475–82.CrossrefGoogle Scholar

  • [46]

    Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – a review. Waste Manage. 2015;45:258–71.CrossrefGoogle Scholar

  • [47]

    Behnamfard A, Salarirad MM, Veglio F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manage. 2013;33(11):2354–63.CrossrefGoogle Scholar

  • [48]

    Ghosh B, Ghosh MK, Parhi P, Mukherjee PS, Mishra BK. Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod. 2015;94:5–19.CrossrefGoogle Scholar

  • [49]

    Vats MC, Singh SK. Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs). Waste Manage. 2015;45:280–88.CrossrefGoogle Scholar

  • [50]

    Ikhlayel M. Environmental impacts and benefits of state-of-the-art technologies for E-waste management. Waste Manage. 2017;68:458–74.CrossrefGoogle Scholar

  • [51]

    Cucchiella F, D’Adamo I, Koh SL, Rosa P. A profitability assessment of European recycling processes treating printed circuit boards from waste electrical and electronic equipments. Renew Sust Energ Rev. 2016;64:749–60.CrossrefGoogle Scholar

  • [52]

    Yoo JS. Metal recovery and rejuvenation of metal-loaded spent catalysts. Catal Today. 1998;44(1):27–46.CrossrefGoogle Scholar

  • [53]

    Thayer AM. Making metathesis work. Chem Eng News. 2007;85:37–47.Google Scholar

  • [54]

    Lingamdinne LP, Koduru JR, Roh H, Choi YL, Chang YY, Yang JK. Adsorption removal of Co (II) from waste-water using graphene oxide. Hydrometallurgy. 2016;165:90–96.CrossrefGoogle Scholar

  • [55]

    Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92(3):407–18.PubMedCrossrefGoogle Scholar

  • [56]

    Vermeulen I, Van Caneghem J, Block C, Baeyens J, Vandecasteele C. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J Hazard Mater. 2011;190(1):8–27.PubMedCrossrefGoogle Scholar

  • [57]

    Cossu R, Lai T. Automotive shredder residue (ASR) management: an overview. Waste Manage. 2015;45:143–51.CrossrefGoogle Scholar

  • [58]

    Santini A, Passarini F, Vassura I, Serrano D, Dufour J, Morselli L. Auto shredder residue recycling: mechanical separation and pyrolysis. Waste Manage. 2012;32(5):852–58.CrossrefGoogle Scholar

  • [59]

    Harder MK, Forton OT. A critical review of developments in the pyrolysis of automotive shredder residue. J Anal Appl Pyrol. 2007;79(1):387–94.CrossrefGoogle Scholar

  • [60]

    Passarini F, Ciacci L, Santini A, Vassura I, Morselli L. Auto shredder residue LCA: implications of ASR composition evolution. J Clean Prod. 2012;23(1):28–36.CrossrefGoogle Scholar

  • [61]

    Mallampati SR, Lee CH, Truc NT, Lee BK Quantitative analysis of precious metals in automotive shredder residue/combustion residue via EDX fluorescence spectrometry. Int J Environ Anal Chem. 2015;95(12):1081–89.CrossrefGoogle Scholar

About the article

Published Online: 2018-03-09


Citation Information: Physical Sciences Reviews, Volume 3, Issue 4, 20180027, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0027.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in