Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Flavin photocatalysis

Burkhard König
  • Chemistry and Pharmacy, Universitat Regensburg, Regensburg, Germany
  • Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susanne Kümmel
  • Chemistry and Pharmacy, Universitat Regensburg, Regensburg, Germany
  • Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eva Svobodová
  • Department of Organic Chemistry, University of Chemistry and Technology, Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Radek Cibulka
  • Corresponding author
  • Department of Organic Chemistry, University of Chemistry and Technology, Prague, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-15 | DOI: https://doi.org/10.1515/psr-2017-0168

Abstract

Thanks to rapid development in the last decades, flavins have been recognized as promising photoactive compounds to design new valuable synthetic methodologies based on photoredox catalysis. The review summarizes general photochemical properties of flavins as well as their early applications in transformations mediated by visible light. Special attention has been paid to the catalyst design for benzylic oxidations as well as to recent flavin applications, for example in E/Z-isomerization, [2+2] cycloaddition, cycloelimination, electrophilic chlorination and sulfide oxidation.

Keywords: biomimetic catalysts; photooxidations; photocycloadditions; photoisomerizations; cycloeliminations

References

  • [1]

    Edwards AM. General Properties of Flavins. In: Silva E, Edwards AM, Eds. Flavins: photochemistry and Photobiology. Cambridge: The Royal Society of Chemistry, 2006:1–11.Google Scholar

  • [2]

    (a) Losi A, Gartner W. Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci. 2008;7:1168–78. (b) Losi A. Flavin-based blue-light photosensors: a photobiophysics update. Photochem. Photobiol. 2007;83:1283–300.CrossrefPubMedGoogle Scholar

  • [3]

    (a) Baldwin TO, Christopher JA, Raushel FM, Sinclair JF, Ziegler MM, Fisher AJ, et al. Structure of bacterial luciferase. Curr Opin Struct Biol. 1995;5:798–809. (b) Wilson T. and Hasting JW. Bioluminescence. Annu. Rev. Cell Dev. Biol. 1998;14:197–230.PubMedCrossrefGoogle Scholar

  • [4]

    (a) Heelis PF, Hartman RF, Rose SD. Photoenzymic repair of UV-damaged DNA: a chemist’s perspective. Chem Soc Rev. 1995;24:289. (b) Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003;103:2203–37.CrossrefGoogle Scholar

  • [5]

    Murov SL, Carmichael I, Hug GL. Handbook of Photochemistry. New York: CRC Press, 1993.Google Scholar

  • [6]

    (a) Fukuzumi S, Kojima T. Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding. J Biol Inorg Chem. 2008;13:321–33. (b) Jordan BJ, Cooke G, Garety JF, Pollier MA, Kryvokhyzha N, Bayir A, Rabani G, Rotello VM. Polymeric model systems for flavoenzyme activity: towards synthetic flavoenzymes. Chem Commun. 2007;1248–50; (c) Mansoorabadi SO, Thibodeaux CJ, Liu HW. The diverse roles of flavin coenzymes – nature’s most versatile thespians. J. Org. Chem. 2007;72:6329–42; (d) Breinlinger E, Niemz A, Rotello VM. Model systems for flavoenzyme activity – stabilization of the flavin radical-anion through specific hydrogen-bond interactions. J. Am. Chem. Soc. 1995;117:5379–80; (e) Cooke G, Legrand YM, Rotello VM. Model systems for flavoenzyme activity: an electrochemically tuneable model of roseoflavin. Chem. Commun.2004;1088–9; (f) Legrand YM, Gray M, Cooke G, Rotello VM. Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties. J. Am. Chem. Soc. 2003;125:15789–95.CrossrefPubMedGoogle Scholar

  • [7]

    (a) Carell T, Burgdorf L, Butenandt J, Epple R, Schwogler A. DNA repair: from model compounds to artificial enzymes. Bioorg Chem. 1999;27:242–54. (b) Harrison CB, O’Neil LL, Wiest O. Computational studies of DNA photolyase. J. Phys. Chem. A. 2005;109:7001–12.Google Scholar

  • [8]

    (a) Kemal C, Bruice TC. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: preliminary studies of a model for bacterial luciferase. Proc Natl Acad Sci USA. 1976;73:995–9. (b) Kemal C, Bruice TC. Chemiluminescence accompanying the decomposition of 4a-flavin alkyl peroxide. Model studies of bacterial luciferase. J. Am. Chem. Soc. 1977;99:7064–7; (c) Zhou D, Mirzakulova E, Khatmullin R, Schapiro I, Olivucci M, Glusac KD. Fast excited-state deactivation in N(5)-ethyl-4a-hydroxyflavin pseudobase. J. Phys. Chem. B.2011;115:7136–43.CrossrefGoogle Scholar

  • [9]

    Blyth AW. LVI. – the composition of cows’ milk in health and disease. J Chem Soc., Trans. 1879;35:530–9.CrossrefGoogle Scholar

  • [10]

    Kuhn R, Weygand F. Synthetisches vitamin B2. Chem Ber. 1934;67:2084–5.CrossrefGoogle Scholar

  • [11]

    Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, et al. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem. 2001;276:36493–500.PubMedCrossrefGoogle Scholar

  • [12]

    Sadeghian K, Bocola M, Schütz M. A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. J Am Chem Soc. 2008;130:12501–13.PubMedCrossrefGoogle Scholar

  • [13]

    Schmaderer H, Svoboda J, König B. Flavin photocatalysts with substrate binding sites. In: Bolm C, Hahn E, Eds. Activating Unreactive Substrates: the Role of Secondary Interactions. Weinheim: Wiley-VCH, 2009:349–58.Google Scholar

  • [14]

    Ghisla S, Kenney WC, Knappe WR, McIntire W, Singer TP. Chemical synthesis and some properties of 6-substituted flavins. Biochemistry. 1980;19:2537–44.CrossrefPubMedGoogle Scholar

  • [15]

    König B, Pelka M, Zieg H, Ritter T, Bouas-Laurent H, Bonneau R, et al. Photoinduced electron transfer in a phenothiazine−riboflavin dyad assembled by zinc−imide coordination in water. J Am Chem Soc. 1999;121:1681–7.CrossrefGoogle Scholar

  • [16]

    Islam SD, Penzkofer A, Hegemann P. Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Phot1 from chlamydomonas Reinhardtii. Chem Phys. 2003;291:97–114.CrossrefGoogle Scholar

  • [17]

    Kutta RJ (2012). PhD Thesis, Universität Regensburg.Google Scholar

  • [18]

    Megerle U, Wenninger M, Kutta RJ, Lechner R, Konig B, Dick B, et al. Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Phys Chem Chem Phys. 2011;13:8869–80.PubMedCrossrefGoogle Scholar

  • [19]

    Meisel D, Neta P. One-electron reduction potential of riboflavine studied by pulse radiolysis. J Phys Chem. 1975;79:2459–61.CrossrefGoogle Scholar

  • [20]

    Amouyal E. Photochemical Production of hydrogen and oxygen from water – a review and state-of-the-art. Sol Energy Mater Sol Cells. 1995;38:249–76.CrossrefGoogle Scholar

  • [21]

    Heelis PF. The photophysical and photochemical properties of flavins (isoalloxazines). Chem Soc Rev. 1982;11:15–39.CrossrefGoogle Scholar

  • [22]

    (a) Miller A, Bruice TC. Oxidations by a 4a-hydroperoxyisoalloxazine hindered in the 9a and 10a positions. J Chem Soc., Chem Commun. 1979;896–7. (b) Eberlein G, Bruice TC. One and two electron reduction of oxygen by 1,5-dihydroflavins. J. Am. Chem. Soc. 1982;104:1449–52; (c) Bruice TC. Mechanisms of flavin catalysis. Acc. Chem. Res. 1980;13:256–62.Google Scholar

  • [23]

    Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans. 2000;28:283–96.CrossrefPubMedGoogle Scholar

  • [24]

    Rehm D, Weller A. Kinetik und mechanismus der elektronübertragung bei der fluoreszenzlöschung in acetonitril. Ber Bunsen-Ges Phys Chem. 1969;73:834–9.Google Scholar

  • [25]

    Julliard M, Chanon M. Photoelectron-transfer catalysis: its connections with thermal and electrochemical analogs. Chem Rev (Washington, DC, U S.). 1983;83:425–506.CrossrefGoogle Scholar

  • [26]

    (a) Ogston FJ, Green DE. The mechanism of the reaction of substrates with molecular oxygen. II. Biochem J. 1935;29:2005–12. (b) Ogston FJ, Green DE. The mechanism of the reaction of substrates with molecular oxygen. I Biochem J. 1935;29:1983–2004; (c) Kuhn R, Rudy H, Weygand F. Über die bildung eines künstlichen ferments aus 6.7-dimethyl-9-l-araboflavin-5′-phosphorsäure. Chem. Ber. 1936;69:2034–6; (d) Kuhn R, Rudy H. Lactoflavin als co-ferment; wirkstoff und träger. Chem. Ber. 1936;69:2557–67; (e) Green DE. α-Glycerophosphate dehydrogenase. Biochem. J. 1936;30:629–44; (f) Das BN. Studies on amino-acid dehydrogenase. II. activator of proline dehydrogenase. Biochem. J. 1936;30:1617–21; (g) Kuhn R, Ströbele R. Synthese von flavin-glucosiden. Chem. Ber. 1937;70:747–52; (h) Kuhn R, Vetter H, Rzeppa HW. Zur spezifität des lactoflavins; ersatz der methylgruppen durch den tetramethylen- und trimethylen-ring. Chem. Ber. 1937;70:1302–14; (i) Kuhn R, Ströbele R. Über o-Nitranilin-glucoside. Chem. Ber. 1937;70:773–87; (j) Dewan JG, Green DE. A new oxidation catalyst. Nature. 1937;140:1097–8; (k) Adler E, Euler HV. Lactoflavin in the eyes of fish. Nature. 193;141:790–1; (l) Dewan JG, Green DE. Coenzyme Factor – a new oxidation catalyst. Biochem. J. 1938;32:626–39; (m) Corran HS, Green DE, Straub FB. The catalytic function of heart flavoprotein. Biochem. J. 1939;33:793–801.CrossrefPubMedGoogle Scholar

  • [27]

    Lipmann F. Flavin component of the pyruvic acid oxidation system. Nature. 1939;143:436.CrossrefGoogle Scholar

  • [28]

    Galston AW. Riboflavin-sensitized photooxidation of indoleacetic acid and related compounds. Proc Natl Acad Sci USA. 1949;35:10–7.CrossrefGoogle Scholar

  • [29]

    (a) Frisell WR, Chung CW, Mackenzie CG. Catalysis of oxidation of nitrogen compounds by flavin coenzymes in the presence of light. J Biol Chem. 1959;234:1297–302. (b) Enns K, Burgess WH. The photochemical oxidation of ethylenediaminetetraacetic acid and methionine by riboflavin. J. Am. Chem. Soc. 1965;87:5766–70; (c) McCormick DB, Koster JF, Veeger C. On the mechanisms of photochemical reductions of fad and fad-dependent flavoproteins. Eur. J. Biochem. 1967;2:387–91; (d) Byrom P, Turnbull JH. Excited states of flavine coenzymes-tv. kinetics of the photoreduction of lumiflavine by methionine. Photochem. Photobiol. 1968;8:243–54; (e) Penzer GR, Radda GK. The Chemistry of Flavines and Flavoproteins – Photoreduction Of Flavins By Amino Acids. Biochem. J. 1968;109:259–68.PubMedGoogle Scholar

  • [30]

    (a) Suelter CH, Metzler DE. The oxidation of a reduced pyridine nucleotide analog by flavins. Biochim Biophys Acta. 1960;44:23–33. (b) Fox JL, Tollin G. Flavoenzyme models. i. flavin free-radical formation in the reduced nicotinamide-adenine dinucleotide-flavin mononucleotide system. Biochemistry. 1966;5:3865–72.CrossrefGoogle Scholar

  • [31]

    (a) Radda GK, Calvin M. Chemical and photochemical reductions of flavin nucleotides and analogs. Biochemistry. 1964;3:384–93. (b) Penzer GR, Radda GK. The chemistry and biological function of isoalloxazines (flavines). Q. Rev. Chem. Soc. 1967;21:43; (c) Byrom P, Turnbull JH. Excited states of flavine coenzymes – ii. anaerobic oxidation of amino acids by excited riboflavine derivatives. Photochem. Photobiol. 6, 125–31.CrossrefPubMedGoogle Scholar

  • [32]

    Yang SF, Ku HS, Pratt HK. Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide. J Biol Chem. 1967;242:5274–80.PubMedGoogle Scholar

  • [33]

    (a) Hemmerich P, Massey V, Weber G. Photo-induced Benzyl Substitution of Flavins by Phenylacetate: a Possible Model for Flavoprotein Catalysis. Nature. 1967;213:728–30. (b) Walker WH, Hemmerich P, Massey V. Reductive photoalkylation of flavin nuclei and flavin-catalyzed photodecarboxylation of phenylacetate. Helv. Chim. Acta. 1967;50:2269–79.PubMedCrossrefGoogle Scholar

  • [34]

    Walker WH, Hemmerich P, Massey V. Light-induced alkylation and dealkylation of the flavin nucleus. Stable Dihydroflavins: spectral Course and Mechanism of Formation. Eur J Biochem. 1970;13:258–66.PubMedCrossrefGoogle Scholar

  • [35]

    Tishler M, Pfister K, Babson RD, Ladenburg K, Fleming AJ. The reaction between o-aminoazo compounds and barbituric acid. a new synthesis of riboflavin. J Am Chem Soc. 1947;69:1487–92.PubMedCrossrefGoogle Scholar

  • [36]

    Bruestlein M, Hemmerich P. Photoreduction of flavocoenzymes by pyruvic acid. FEBS Lett. 1968;1:335–8.CrossrefGoogle Scholar

  • [37]

    Hemmerich P, Nagelschneider G, Veeger C. Chemistry and molecular biology of flavins and flavoproteins. FEBS Lett. 1970;8:69–83.CrossrefPubMedGoogle Scholar

  • [38]

    Weatherby GD, Carr DO. Riboflavine-catalyzed photooxidative decarboxylation of dihydrophthalates. Biochemistry. 1970;9:344–50.CrossrefPubMedGoogle Scholar

  • [39]

    (a) Yoneda F, Mori K, Ono M, Kadokawa Y, Nagao E, Yamaguchi H. Syntheses of 2-deoxo-2-phenyl-5-deazaflavins and 3-phenyl-5-deazaflavins and their use in the oxidation of benzyl alcohol and benzylamine. Chem Pharm Bull. 1980;28:3514–20. (b) Nagamatsu T, Matsumoto E, Yoneda F. Autorecycling oxidation of alcohol catalyzed by pyrimidopteridines as a flavin model. Chem. Lett. 1982;1127–30.CrossrefGoogle Scholar

  • [40]

    (a) Fukuzumi S, Tanii K, Tanaka T. Protonated pteridine and flavin analogues acting as efficient and substrate-selective photocatalysts in the oxidation of benzyl alcohol derivatives by oxygen. J Chem Soc., Chem Commun. 1989;816–18. (b) Fukuzumi S, Kuroda S, Tanaka T. Flavin analog-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light. J. Am. Chem. Soc. 1985;107:3020–7.Google Scholar

  • [41]

    Tong W, Ye H, Zhu H, D’Souza VT. Photooxidation of substituted benzyl alcohol by riboflavin. J Mol Struct THEOCHEM. 1995;333:19–27.CrossrefGoogle Scholar

  • [42]

    Fukuzumi S, Kuroda S. Photooxidation of benzyl alcohol derivatives by oxygen, catalyzed by protonated flavin analogs. Res Chem Intermed. 1999;25:789–811.CrossrefGoogle Scholar

  • [43]

    Fukuzumi S, Yasui K, Suenobu T, Ohkubo K, Fujitsuka M, Ito O. Efficient Catalysis of Rare-Earth Metal Ions in Photoinduced Electron-Transfer Oxidation of Benzyl Alcohols by a Flavin Analogue. J Phys Chem. 2001;105:10501–10.CrossrefGoogle Scholar

  • [44]

    Muhldorf B, Wolf R. The enhanced reduction potential of riboflavin tetraacetate coordinating to scandium triflate enables the challenging photocatalytic C-H oxidation of electron-deficient alkylbenzenes and benzyl alcohols. Chem Commun. 2015;51:8425–8.Google Scholar

  • [45]

    D’Souza VT. Modification of cyclodextrins for use as artificial enzymes. Supramol Chem. 2003;15:221–9.CrossrefGoogle Scholar

  • [46]

    Cibulka R, Vasold R, König B. Catalytic photooxidation of 4-methoxybenzyl alcohol with a flavin-zinc(II)-cyclen complex. Chem Eur J. 2004;10:6223–31.CrossrefGoogle Scholar

  • [47]

    (a) Shinkai S, Nakao H, Ueda K, Manabe O. Light-mediated oxidation of alcohols and mandelate by flavin-metal complexes. Tetrahedron Lett. 1984;25:5295–8. (b) Shinkai S, Nakao H, Ueda K, Manabe O, Ohnishi M. Selective photooxidation of alkali mandelates by a flavin bearing a crown ring as a metal recognition site. Bull. Chem. Soc. Jpn. 1986;59:1632–4.CrossrefGoogle Scholar

  • [48]

    Schmaderer H, Bhuyan M, König B. Synthesis of rigidified flavin-guanidinium ion conjugates and investigation of their photocatalytic properties. Beilstein J Org Chem. 2009;5:26.PubMedGoogle Scholar

  • [49]

    Yasuda M, Nakai T, Kawahito Y, Shiragami T. Micelle-enhancing effect on a flavin-photosensitized reaction of benzyl alcohols in aqueous solution. Bull Chem Soc Jpn. 2003;76:601–5.CrossrefGoogle Scholar

  • [50]

    Svoboda J, Schmaderer H, König B. Thiourea-enhanced flavin photooxidation of benzyl alcohol. Chem Eur J. 2008;14:1854–65.CrossrefGoogle Scholar

  • [51]

    Schmaderer H, Hilgers P, Lechner R, König B. Photooxidation of benzyl alcohols with immobilized flavins. Adv Synth Catal. 2009;351:163–74.CrossrefGoogle Scholar

  • [52]

    Murakami M, Ohkubo K, Fukuzumi S. Inter- and intramolecular photoinduced electron transfer of flavin derivatives with extremely small reorganization energies. Chem Eur J. 2010;16:7820–32.CrossrefGoogle Scholar

  • [53]

    Daďová J, Kümmel S, Feldmeier C, Cibulková J, Pažout R, Maixner J, et al. Aggregation effects in visible-light flavin photocatalysts: synthesis, structure, and catalytic activity of 10-arylflavins. Chem Eur J. 2013;19:1066–75.CrossrefGoogle Scholar

  • [54]

    Korvinson KA, Hargenrader GN, Stevanovic J, Xie Y, Joseph J, Maslak V, et al. Improved flavin-based catalytic photooxidation of alcohols through intersystem crossing rate enhancement. J Phys Chem. 2016;120:7294–300.CrossrefGoogle Scholar

  • [55]

    Feldmeier C, Bartling H, Magerl K, Gschwind RM. LED-illuminated NMR studies of flavin-catalyzed photooxidations reveal solvent control of the electron-transfer mechanism. Angew Chem Int Ed. 2015;54:1347–51.CrossrefGoogle Scholar

  • [56]

    Lechner R, König B. Oxidation and deprotection of primary benzylamines by visible light flavin photocatalysis. Synthesis (Mass). 2010;(2010:1712–8.CrossrefGoogle Scholar

  • [57]

    Lechner R, Kümmel S, König B. Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids. Photochem Photobiol Sci. 2010;9:1367–77.PubMedCrossrefGoogle Scholar

  • [58]

    Mühldorf B, Wolf R. Visible-light-driven aerobic photooxidation of aldehydes to methyl esters catalyzed by riboflavin tetraacetate. ChemCatChem. 2017;9:920–3.CrossrefGoogle Scholar

  • [59]

    Mühldorf B, Wolf R. C-H photooxygenation of alkyl benzenes catalyzed by riboflavin tetraacetate and a non-heme iron catalyst. Angew Chem Int Ed. 2016;55:427–30.CrossrefGoogle Scholar

  • [60]

    Hering T, Mühldorf B, Wolf R, König B. Halogenase-inspired oxidative chlorination using flavin photocatalysis. Angew Chem Int Ed. 2016;55:5342–5.CrossrefGoogle Scholar

  • [61]

    (a) Kay CW, Bacher A, Fischer M, Richter G, Schleicher E, Weber S. Blue light-initiated DNA repair by photolyase. In: Silva E, Edwards AM, Eds. Flavins: photochemistry and Photobiology. Cambridge: The Royal Society of Chemistry, 2006:151–82. (b) Kim ST, Sancar A. Photochemistry, photophysics and mechanism of pyrimidine dimer repair by DNA photolyase. Photochem. Photobiol. 1993;57:895–904; (c) Carell T, Epple R. Repair of UV light induced DNA lesions: a comparative study with model compounds. Eur. J. Org. Chem. 1998;1245–58Google Scholar

  • [62]

    (a) Metzler DE, Cairns WL. Photochemical degradation of flavines. VI. New photoproduct and its use in studying the photolytic mechanism. J Am Chem Soc. 1971;93:2772–7. (b) Kino K, Kobayashi T, Arima E, Komori R, Miyazawa H. Photoirradiation products of flavin derivatives, and the effects of photooxidation on guanine. Bioorg. Med. Chem. Lett. 2009;19:2070–4.CrossrefGoogle Scholar

  • [63]

    Song P-S, Sun M, Koziolowa A, Koziol J. Phototautomerism of lumichromes and alloxazines. J Am Chem Soc. 1974;96:4319–23.CrossrefGoogle Scholar

  • [64]

    (a) Kozioł J. Studies on Flavins in Organic Solvents – III. Spectral Behaviour of Lumifalvin. Photochem Photobiol. 1969;9:45–53. (b) Moyon NS, Mitra S. Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study. J. Phys. Chem. A. 2011;115:2456–64.CrossrefGoogle Scholar

  • [65]

    Porcal G, Bertolotti SG, Previtali CM, Encinas MV. Electron transfer quenching of singlet and triplet excited states of flavins and lumichrome by aromatic and aliphatic electron donors. Phys Chem Chem Phys. 2003;5:4123.CrossrefGoogle Scholar

  • [66]

    (a) Gelalcha FG. Heterocyclic hydroperoxides in selective oxidations. Chem Rev. 2007;107:3338–61. (b) Imada Y, Naota T. Flavins as organocatalysts for environmentally benign molecular transformations. Chem. Rec. 2007;7:354–61; (c) Murahashi S, Oda T, Masui Y. Flavin-catalyzed oxidation of amines and sulfur compounds with hydrogen peroxide. J. Am. Chem. Soc. 1989;111:5002–3; (d) Jurok R, Cibulka R, Dvořáková H, Hampl F, Hodačová J. Planar chiral flavinium salts – prospective catalysts for enantioselective sulfoxidation reactions. Eur. J. Org. Chem. 2010:5217–24; (e) Murahashi SI, Ono S, Imada Y. Asymmetric baeyer-villiger reaction with hydrogen peroxide catalyzed by a novel planar-chiral bisflavin. Angew. Chem. Int. Ed. 2002;41:2366–8; (f) Baxová L, Cibulka R, Hampl F. Organocatalytic sulfoxidation in micellar systems containing amphiphilic flavinium salts using hydrogen peroxide as a terminal oxidant. J. Mol. Catal. A: Chem. 2007;277:53–60.CrossrefPubMedGoogle Scholar

  • [67]

    (a) Kim JM, Bogdan MA, Mariano PS. Mechanistic analysis of the 3-methyllumiflavin-promoted oxidative deamination of benzylamine. A potential model for monoamine oxidase catalysis. J Am Chem Soc. 1993;115:10591–5. (b) Ménová P, Eigner V, Čejka J, Dvořáková H, Šanda M, Cibulka R. Synthesis and structural studies of flavin and alloxazine adducts with O-nucleophiles. J. Mol. Struct. 2011;1004:178–87.CrossrefGoogle Scholar

  • [68]

    Sikorska E, Khmelinskii IV, Prukała W, Williams SL, Patel M, Worrall DR, et al. Spectroscopy and photophysics of lumiflavins and lumichromes. J Phys Chem. 2004;108:1501–8.CrossrefGoogle Scholar

  • [69]

    Lei B, Ding Q, Tu SC. Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5′-phosphate as a model. Biochemistry. 2004;43:15975–82.PubMedCrossrefGoogle Scholar

  • [70]

    Insińska-Rak M, Sikorska E, Bourdelande JL, Khmelinskii IV, Prukała W, Dobek K, et al. Spectroscopy and photophysics of flavin-related compounds: 5-deaza-riboflavin. J Mol Struct. 2006;783:184–90.CrossrefGoogle Scholar

  • [71]

    (a) Sichula V, Kucheryavy P, Khatmullin R, Hu Y, Mirzakulova E, Vyas S, et al. Electronic properties of N(5)-ethyl flavinium ion. J Phys Chem. 2010;114:12138–47. (b) Imada Y, Iida H, Ono S, Masui Y, Murahashi S. Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation. Chem. Asian J. 2006;1:136–47.CrossrefGoogle Scholar

  • [72]

    Walker AG, Radda GK. Photoreactions of retinol and derivatives sensitized by flavins. Nature. 1967;215:1483.PubMedCrossrefGoogle Scholar

  • [73]

    (a) Metternich JB, Gilmour R. A Bio-Inspired, Catalytic E → Z Isomerization of Activated Olefins. J Am Chem Soc. 2015;137:11254–57. (b) Metternich JB, Artiukhin DG, Holland MC, von Bremen-Kühne M, Neugebauer J, Gilmour R. Photocatalytic E → Z isomerization of polarized alkenes inspired by the visual cycle: mechanistic dichotomy and origin of selectivity. J. Org. Chem. 2017;82:9955–77; (c) Metternich JB, Gilmour R. One photocatalyst, n activation modes strategy for cascade catalysis: emulating coumarin biosynthesis with (−)-riboflavin. J. Am. Chem. Soc. 2016;138:1040–5.CrossrefGoogle Scholar

  • [74]

    (a) Mojr V, Svobodova E, Strakova K, Nevesely T, Chudoba J, Dvorakova H, et al. Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem Commun. 2015;51:12036–9. (b) Jirásek M, Straková K, Neveselý T, Svobodová E, Rottnerová Z, Cibulka R. Flavin-mediated visible light [2+2] photocycloadditon of nitrogen and sulfur-containing dienes. Eur. J. Org. Chem. 2017:2139–46.; (c) Mojr V, Pitrová G, Straková K, Prukała D, Brazevic S, Svobodová E, Hoskovcová I, Burdziński G, Slanina T, Sikorski M, Cibulka R. Flavin photocatalysts for visible-light [2+2] cycloadditions: structure, reactivity and reaction mechanism. ChemCatChem. 2018;10:849–58.CrossrefGoogle Scholar

  • [75]

    Špačková J, Svobodová E, Hartman T, Stibor I, Kopecká J, Cibulková J, et al. Visible Light [2+2] Photocycloaddition Mediated by Flavin Derivative Immobilized on Mesoporous Silica. ChemCatChem. 2017;9:1177–81.CrossrefGoogle Scholar

  • [76]

    Hartman T, Cibulka R. Photocatalytic Systems with Flavinium Salts: from Photolyase Models to Synthetic Tool for Cyclobutane Ring Opening. Org Lett. 2016;18:3710–3.CrossrefPubMedGoogle Scholar

  • [77]

    Sikorska E, Sikorski M, Steer RP, Wilkinson F, Worrall DR Efficiency of singlet oxygen generation by alloxazines and isoalloxazines. J Chem Soc., Faraday Trans. 1998;94:2347–53.CrossrefGoogle Scholar

  • [78]

    (a) Dad’ová J, Svobodová E, Sikorski M, König B, Cibulka R. Photooxidation of Sulfides to Sulfoxides Mediated by Tetra-O-Acetylriboflavin and Visible Light. ChemCatChem. 2012;4:620–3. (b) Neveselý T, Svobodová E, Chudoba J, Sikorski M, Cibulka R. Efficient Metal-Free Aerobic Photooxidation of Sulfides to Sulfoxides Mediated by a Vitamin B2 Derivative and Visible Light. Adv. Synth. Catal. 2016;358:1654–63.CrossrefGoogle Scholar

  • [79]

    Insińska-Rak M, Sikorska E, Bourdelande JL, Khmelinskii IV, Prukała W, Dobek K, et al. New Photochemically Stable Riboflavin analogue-3-Methyl-Riboflavin Tetraacetate. J. Photochem. Photobiol., A. 2007;186:14–23.Google Scholar

  • [80]

    Sikorska E, Khmelinskii I, Komasa A, Koput J, Ferreira LF, Herance JR, et al. Spectroscopy and photophysics of flavin related compounds: riboflavin and iso-(6,7)-riboflavin. Chem Phys. 2005;314:239–47.CrossrefGoogle Scholar

  • [81]

    Sikorski M, Sikorska E, Koziolowa A, Gonzalez Moreno R, Bourdelande JL, Steer RP, et al. Photophysical properties of lumichromes in water. J Photochem Photobiol., B. 2001;0:114–9.Google Scholar

  • [82]

    Sahbaz F, Somer G. Photosensitized decomposition of ascorbic acid in the presence of riboflavin. Food Chem. 1993;46:177–82.CrossrefGoogle Scholar

  • [83]

    Kanner JD, Fennema O. Photooxidation of tryptophan in the presence of riboflavin. J Agric Food Chem. 1987;35:71–6.CrossrefGoogle Scholar

  • [84]

    Yoshimura A, Ohno T. Lumiflavin-Sensitized Photooxygenation of Indole. Photochem Photobiol. 1988;48:561–5.PubMedCrossrefGoogle Scholar

  • [85]

    Silva E, Edwards AM, Pacheco D. Visible light-induced photooxidation of glucose sensitized by riboflavin. J Nutr Biochem. 1999;10:181–5.CrossrefPubMedGoogle Scholar

  • [86]

    King JM, Min DB. Riboflavin Photosensitized Singlet Oxygen Oxidation of Vitamin D. J Food Sci. 1998;63:31–4.CrossrefGoogle Scholar

  • [87]

    (a) Fukuzumi S, Tanii K, Tanaka T. Flavin-sensitized photo-oxidation of unsaturated fatty acids. J Chem Soc., Perkin Trans. 1989;2:2103. (b) Chacon JN, McLearie J, Sinclair RS. Singlet oxygen yields and radical contributions in the dye-sensitized photooxidation in methanol of esters of polyunsaturated fatty acids (oleic, linoleic, linolenic and arachidonic). Photochem. Photobiol. 1988;47:647–56; (c) Huvaere K, Cardoso DR, Homemde-Mello P, Westermann S, Skibsted LH. Light-induced oxidation of unsaturated lipids as sensitized by flavins. J. Phys. Chem. B. 2010;114:5583–93.Google Scholar

About the article

Published Online: 2018-06-15


Citation Information: Physical Sciences Reviews, Volume 3, Issue 8, 20170168, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0168.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kazumasa Tanimoto, Ryoma Ohkado, and Hiroki Iida
The Journal of Organic Chemistry, 2019
[4]
Luca Schmermund, Valentina Jurkaš, F. Feyza Özgen, Giovanni D. Barone, Hanna C. Büchsenschütz, Christoph K. Winkler, Sandy Schmidt, Robert Kourist, and Wolfgang Kroutil
ACS Catalysis, 2019, Volume 9, Number 5, Page 4115
[5]
Jan Zelenka, Eva Svobodová, Ján Tarábek, Irena Hoskovcová, Veronika Boguschová, Sarah Bailly, Marek Sikorski, Jana Roithová, and Radek Cibulka
Organic Letters, 2018

Comments (0)

Please log in or register to comment.
Log in