Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Polyoxometalate catalysts for biomass dissolution: understanding and design

Steven P. Kelley
  • Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H3A 0B8, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paula Berton
  • Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H3A 0B8, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas† Metlen
  • School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Bldg., Stranmillis Rd., Northern Ireland BT9 5AG, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robin D. Rogers
  • Corresponding author
  • Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H3A 0B8, Canada
  • The University of Alabama, Department of Chemistry, AL, 35487 Tuscaloosa, United States of America
  • 525 Solutions, Inc., P.O. Box 2206, AL, 35403 Tuscaloosa, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-31 | DOI: https://doi.org/10.1515/psr-2017-0190


The use of polyoxometalate catalysts for selective delignification of biomass presents a possible route toward using ionic liquids (ILs) to efficiently obtain high-molecular weight biopolymers from biomass. Rapid progress in this area will depend on recognizing and using the link with already well-developed inorganic chemistry in ILs pursued outside the field of biomass processing. Here, we use crystal structures determined from single crystal X-ray diffraction to better understand the behavior of [PV2Mo10O40]5-, a polyoxometalate catalyst known for its ability to promote selective delignification of biomass in the IL 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). The crystal structure of [C2mim]5[PV2Mo10O40]·THF shows the formation of cationic shells around the anions which are likely representative of the interactions of this catalyst with [C2mim][OAc] itself. The reaction of NH4VO3 with [C2mim][OAc] is explored to better understand the chemistry of vanadium(V), which is critical to redox catalysis of [PV2Mo10O40]5-. This reaction gives crystals of [C2mim]4[V4O12], showing that this IL forms discrete metavanadates which are obtained from aqueous solutions in a specific pH range and indicating that the basicity of [OAc]- dominates the speciation of vanadium (V) in this IL.

Keywords: Biomass; Catalysis; Inorganic chemistry; Ionic liquids; Polyoxometalate; Vanadium


  • [1]

    Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–75.CrossrefPubMedGoogle Scholar

  • [2]

    Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage. 2010;51:1412–21.CrossrefGoogle Scholar

  • [3]

    WangH, GurauG, RogersRD.Dissolution of biomass using ionic liquids. In: ZhangS, WangJ, LuX, ZhouQ, editor(s).Structures and Interactions of Ionic LiquidsStructure and Bonding Vol. 151.Heidelberg, Germany: Springer Berlin,2013:79–105.Google Scholar

  • [4]

    Brandt A, Gräsvik J, Hallett JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013;15:550–83.CrossrefGoogle Scholar

  • [5]

    Rinaldi R, Palkovits R, Scuth F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed. 2008;47:8047–50.CrossrefGoogle Scholar

  • [6]

    Wang P, Yu H, Zhan S, Wang S. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresour Technol. 2011;102:4179–83.PubMedCrossrefGoogle Scholar

  • [7]

    Zhang Y, Du H, Qian X, Chen EY-X. Ionic liquid-water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuels. 2010;24:2410–17.CrossrefGoogle Scholar

  • [8]

    Rogers RD. Eliminating the need for chemistry. Chem Eng News. 2015;93:42–43.CrossrefGoogle Scholar

  • [9]

    Rosewald M, Hou FY, Mututuvari T, Harkins AL, Tran CD. Cellulose-chitosan-keratin composite materials: synthesis, immunological and antibacterial properties. ECS Trans. 2014;64:499–505.CrossrefPubMedGoogle Scholar

  • [10]

    Sweely KD, Fox ET, Brown EK, Haverhals LM, De Long HC, Trulove PC. Inkjet printing ionic liquids for the fabrication of surface structures on biopolymer substrates. ECS Trans. 2014;64:575–82.CrossrefGoogle Scholar

  • [11]

    Asaadi S, Hummel M, Hellsten S, et al. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid. ChemSusChem. 2016;9:3250–58.CrossrefPubMedGoogle Scholar

  • [12]

    Haverhals LM, Reichert WM, De Long HC, Trulove PC. Natural fiber welding. Macromol Mater Eng. 2010;295:425–30.Google Scholar

  • [13]

    Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers RD. Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chem. 2011;13:1158–61.CrossrefGoogle Scholar

  • [14]

    Barber PS, Kelley SP, Griggs CS, Wallace S, Rogers RD. Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem. 2014;16:1828–36.CrossrefGoogle Scholar

  • [15]

    King CA, Shamshina JL, Gurau G, Berton P, Khan NFAF, Rogers RD. A platform for more sustainable chitin films from an ionic liquid process. Green Chem. 2017;19:117–26.CrossrefGoogle Scholar

  • [16]

    Shen X, Shamshina JL, Berton P, et al. Comparison of hydrogels prepared with ionic-liquid-isolated vs commercial chitin and cellulose. ACS Sust Chem Eng. 2016;4:471–80.CrossrefGoogle Scholar

  • [17]

    Wang H, Gurau G, Rogers RD. Ionic liquid processing of cellulose. Chem Soc Rev. 2012;41:1519–37.PubMedCrossrefGoogle Scholar

  • [18]

    Abe M, Ohno H. Maintenance-free cellulose solvents based on onium hydroxides. Kagaku to Kogyo. 2010;63:891–93.Google Scholar

  • [19]

    Xu S, Zhang J, He A, Li J, Zhang H, Han CC. Electrospinning of native cellulose from nonvolatile solvent system. Polymer. 2008;49:2911–17.CrossrefGoogle Scholar

  • [20]

    Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 2011;13:2038–47.CrossrefGoogle Scholar

  • [21]

    Sun N, Jiang X, Maxim ML, Metlen A, Rogers RD. Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem. 2011;4:65–73.PubMedCrossrefGoogle Scholar

  • [22]

    GellerstedtG.Pulping Chemistry. In: HonDN-S, ShiraishiN, editor(s).Wood and Cellulosic Chemistry, 2nd ed.New York and Basel: Marcel Dekker. CRC Press, New York2001:859–905.Google Scholar

  • [23]

    WangH, BlockLE, RogersRD.Catalytic conversion of biomass in ionic liquids. In: HardacreC, ParvulescuV, editor(s).Catalytic Conversion of Biomass in Ionic LiquidsCatalysis Series.Cambridge, UK: RSC Publishing,2014:1–19.Google Scholar

  • [24]

    Harton A, Nagi MK, Glass MM, Junk PC, Atwood JM, Vincent JB. Synthesis and characterization of symmetric and unsymmetric oxo-bridged trinuclear chromium benzoate complexes: crystal and molecular structure of [Cr3O(O2CPh)6(py)3]ClO4. Inorg Chim Acta. 1994;217:171–79.CrossrefGoogle Scholar

  • [25]

    Burns PC Nanoscale uranium-based cage clusters inspired by uranium mineralogy. Mineral Magazine 2011, 75, 1–25.CrossrefGoogle Scholar

  • [26]

    KegginJF.The structure and formula of 12-phosphotungstic acid.Proc Royal Soc.1934;144:75–76CrossrefGoogle Scholar

  • [27]

    Kozhevnikov IV. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev. 1998;98:171–98.PubMedCrossrefGoogle Scholar

  • [28]

    Wang H, Maxim ML, Gurau G, Rogers RD. Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate. Bioresour Technol. 2013;136:739–42.PubMedCrossrefGoogle Scholar

  • [29]

    Cheng F, Wang H, Rogers RD. Oxygen enhances polyoxometalate-based catalytic dissolution and delignification of woody biomass in ionic liquids. ACS Sust Chem Eng. 2014;2:2859–65.CrossrefGoogle Scholar

  • [30]

    MüllerA, KrickmeyerE, BöggeH, SchmidtmannM, PetersF.Organizational forms of matter: an inorganic super fullerene and keplerate based on molybdenum oxide.Angew Chem Int Ed.1998;37:3359–63.CrossrefGoogle Scholar

  • [31]

    Ozdokur KV, Moniruzzaman M, Yanik J, Ono T. Synthesis and characterization of a polyoxometalate-based ionic liquid catalyst for delignification of wood biomass. Wood Sci Technol. 2016;50:1213–26.CrossrefGoogle Scholar

  • [32]

    Abia JA, Ozer R. Development of polyoxometalate-ionic liquid compounds for processing cellulosic biomass. Bioresour. 2013;8:2924–26.Google Scholar

  • [33]

    WangJ, ZhouM, WangW, YuanY, FuN.CN 105618139 A2016. A method for degradation of lignocellulose based on molybdenum polyoxometalate catalyst. June1.Google Scholar

  • [34]

    Hu L, Lin L, Wu Z, Zhou S, Liu S. Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Cat B. 2015;174-175:225–43.CrossrefGoogle Scholar

  • [35]

    Li K, Bai L, Amaniampong PN, Jia X, Lee J-M, Yang Y. One‐pot transformation of cellobiose to formic acid and levulinic acid over ionic‐liquid‐based polyoxometalate hybrids. ChemSusChem. 2014;7:2670–77.CrossrefPubMedGoogle Scholar

  • [36]

    Chen J, Zhao G, Chen L. Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts. RSC Adv. 2014;4:4194–202.CrossrefGoogle Scholar

  • [37]

    ChenX, SouvanhthongB, WangH, ZhengH, WangX, HuoM.Polyoxometalate-based ionic liquid as thermoregulated and environmentally friendly catalyst for starch oxidation.Appl Cat B: Environ.2013;138-139:161–66.CrossrefGoogle Scholar

  • [38]

    Chidambaram M, Bell AT. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem. 2010;12:1253–62.CrossrefGoogle Scholar

  • [39]

    Lin S, Liu W, Li Y, Wu Q, Wang E, Zhang Z. Preparation of polyoxometalates in ionic liquids by ionothermal synthesis. Dalton Trans. 2010;39:1740–44.PubMedCrossrefGoogle Scholar

  • [40]

    Liu W, Tan H, Chen W, Li Y, Wang E. Ionothermal synthesis and characterization of two new heteropolytungstates with 1-ethyl-3-methylimidazolium bromide ionic liquid solvent. J Coord Chem. 2010;63:1833–43.CrossrefGoogle Scholar

  • [41]

    Linguito SL, Zhang X, Padmanabhan M, et al. New polyoxomolybdate compounds synthesized in situ using ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate as green solvent. New J Chem. 2013;37:2894–901.CrossrefGoogle Scholar

  • [42]

    Rao GR, Rajkumar T, Varghese B. Synthesis and characterization of 1-butyl-3-methyl imidazolium phosphomolybdate molecular salt. Solid State Sci. 2009;11:36–42.CrossrefGoogle Scholar

  • [43]

    Chen W-L, Chen B-W, Tan H-Q, Li Y-G, Wang Y-H, Wang E-B. Ionothermal syntheses of three transition-metal-containing polyoxotungstate hybrids exhibiting the photocatalytic and electrocatalytic properties. J Solid State Chem. 2010;183:310–21.CrossrefGoogle Scholar

  • [44]

    Santos FM, Brandão P, Félix V, et al. Organic-inorganic hybrid materials based on iron(III)-polyoxotungstates and 1-butyl-3-methylimidazolium cations. Dalton Trans. 2012;41:12145–55.PubMedCrossrefGoogle Scholar

  • [45]

    Chen D, Sahasrabudhe A, Wang P, Dasgupta A, Yuan R, Roy S. Synthesis and properties of a novel quaternized imidazolium [α-PW12O40]3- salt as a recoverable photo-polymerization catalyst. Dalton Trans. 2013;42:10587–96.CrossrefGoogle Scholar

  • [46]

    Plotnikova TE, Grigoriev MS, Fedoseev AM, Antipin MY. Crystal structure of praseodymium(III) complex [Pr(DMSO)8]2PMo10V2O40(NO3)·DMSO (DMSO = dimethyl sulfoxide). Russ J Coord Chem. 2004;30:60–67.CrossrefGoogle Scholar

  • [47]

    Liu Y, Liu S, Liu S et al. Facile synthesis of a nanocrystalline metal-organic framework impregnated with a phosphovanadomolybdate and its remarkable catalytic performance in ultradeep oxidative desulfurization. Chem Cat Chem. 2013;5:3086–91.Google Scholar

  • [48]

    Liu X, Wang L, Yin X, Huang R. Assembly of hybrid materials based on a lanthanide-organic framework and a Keggin-type [PMo12-xVxO40](3+x)- (x = 1, 2) cluster. Eur J Inorg Chem. 2013;2013:2181–7.CrossrefGoogle Scholar

  • [49]

    Huang X, Zhang X, Zhang D et al. Binary Pd-polyoxometalates and isolation of a ternary Pd-V-polyoxometalate active species for selective aerobic oxidation of alcohols. Chem Eur J. 2014;20:2557–64.CrossrefGoogle Scholar

  • [50]

    Kalyani V, Satyanarayana VSV, Singh V, et al. New polyoxometalates containing hybrid polymers and their potential for nano-patterning. Chem Eur J. 2014;21:2250–58.Google Scholar

  • [51]

    AidoudiFH, AldousDW, GoffRJ, et al.An ionothermally prepared S = 1/2 vanadium oxyfluoride Kagome lattice.Nat Chem.2011;3:801–06.PubMedCrossrefGoogle Scholar

  • [52]

    Aidoudi FH, Black C, Athukorala Arachchige KS, Slawin AMZ, Morris RE, Lightfoot P. Structural diversity in hybrid vanadium(IV) oxyfluorides based on a common building block. Dalton Trans. 2014;43:568–75.CrossrefPubMedGoogle Scholar

  • [53]

    Fechler N, Fellinger T-P, Antonietti M. Template-free one-pot synthesis of porous binary and ternary metal nitride@ N-doped carbon composites from ionic liquids. Chem Mater. 2012;24:713–19.CrossrefGoogle Scholar

  • [54]

    Chou S-L, Wang J-Z, Sun J, et al. High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem Mater. 2008;20:7044–51.CrossrefGoogle Scholar

  • [55]

    Jayaprakash N, Das SK, Archer LA. The rechargeable aluminum-ion battery. Chem Commun. 2011;47:12610–2.CrossrefGoogle Scholar

  • [56]

    Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S, Yamaki J. Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc. 2010;157:A536–43.CrossrefGoogle Scholar

  • [57]

    Conte V, Fabbianesi F, Floris B, et al. Vanadium-catalyzed, microwave-assisted oxidations with H2O2 in ionic liquids. Pure Appl Chem. 2009;81:1265–77.CrossrefGoogle Scholar

  • [58]

    Hanz KR, Riechel L. Vanadium complexes in a Lewis basic room-temperature 1-ethyl-3-methyl-1H-imidazolium chloride/aluminum chloride molten salt. Inorg Chem. 1997;36:4024–28.CrossrefGoogle Scholar

  • [59]

    Dent AJ, Lees A, Lewis RJ, Welton T. Vanadium chloride and chloride oxide complexes in an ambient-temperature ionic liquid. The first use of bis(trichloromethyl) carbonate as a substitute for phosgene in an inorganic system. J Chem Soc Dalton Trans. 1996;1996:2787–92.Google Scholar

  • [60]

    Mahjoor P, Latturner SE. Synthesis and structural characterization of [bpyr]4[V4O4Cl12] and [bpyr]4[Bi4Cl16] grown in ionic liquid [bpyr][AlCl4] (bpyr = 1-Butylpyridinium). Cryst Growth Des. 2009;9:1385–89.CrossrefGoogle Scholar

  • [61]

    Kanatani T, Matsumoto K, Hagiwara R. Syntheses and physicochemical properties of low-melting salts based on VOF4 and MoOF5, and the molecular geometries of the dimeric (VOF4)2 and Mo2O4F62– anions. Eur J Inorg Chem. 2010;2010:1049–55.CrossrefGoogle Scholar

  • [62]

    Branco A, Belchior J, Branco LC, Pina F. Intrinsically electrochromic ionic liquids based on vanadium oxides: illustrating liquid electrochromic cells. RSC Adv. 2013;3:25627–30.CrossrefGoogle Scholar

  • [63]

    Bányai I, Conte V, Pettersson L, Silvagni A. On the nature of V(V) species in hydrophilic ionic liquids: A spectroscopic approach. Eur J Inorg Chem. 2008;2008:5373–81.CrossrefGoogle Scholar

  • [64]

    Wang H, Gurau G, Kelley SP, Myerson AS, Rogers RD. Hydrophobic vs. hydrophilic ionic liquid separations strategies in support of continuous pharmaceutical manufacturing. RSC Adv. 2013;3:10019–26.CrossrefGoogle Scholar

  • [65]

    Araujo JMM, Ferreira R, Marrucho IM, Rebelo LPN. Solvation of nucleobases in 1,3-dialkylimidazolium acetate ionic liquids: NMR spectroscopy insights into the dissolution mechanism. J Phys Chem B. 2011;115:10739–49.CrossrefPubMedGoogle Scholar

  • [66]

    Pereiro AB, Araújo JMM, Oliveira FS, et al. Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chem Commun. 2012;48:3656–58.CrossrefGoogle Scholar

  • [67]

    Rodríguez H, Gurau G, Holbrey JD, Rogers RD. Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chem Commun. 2011;47:3222–24.CrossrefGoogle Scholar

  • [68]

    Livage J. Vanadium pentoxide gels. Chem Mater. 1991;3:578–93.CrossrefGoogle Scholar

  • [69]

    Roman P, San Jose A, Luque A, Gutierrez-Zorrilla JM. Observation of a novel cyclic tetrametavanadate anion isolated from aqueous solution. Inorg Chem. 1993;32:775–76.CrossrefGoogle Scholar

  • [70]

    Nakano H, Ozeki T, Yagasaki A. (Et4N)4[V4O12]·2H2O. Acta Cryst. 2002;C58:m464–5.Google Scholar

  • [71]

    Zhang Y, Zapf PJ, Meyer LM, Haushalter RC, Zubieta J. Polyoxoanion coordination chemistry: synthesis and characterization of the heterometallic, hexanuclear clusters [{Zn(bipy)2}2V4O12], [{Zn(phen)2}2V4O12].H2O, and [{Ni(bipy)2}2Mo4O14]. Inorg Chem. 1997;36:2159–65.CrossrefGoogle Scholar

  • [72]

    Yang GY, Gao D-W, Chen Y, Jia H-Q. [Ni(C10H8N2)3]2[V4O12].11H2O. Acta Cryst. 1998;C54:616–8.Google Scholar

  • [73]

    Yi Z-H, Cui X-B, Zhang X, et al. Hydrothermal syntheses and structural characterizations of organic-inorganic hybrid materials of the M(II)-ligand/vanadium oxide system (M(II) = Mn(II), Cu(II) and Zn(II); ligand = 2,2’-bipyridine and 1,10-phenanthroline). Dalton Trans. 2007;2007:2115–20.Google Scholar

  • [74]

    Qi Y, Wang Y, Li H, et al. Hydrothermal syntheses and crystal structures of bimetallic cluster complexes [{Cd(phen)2}2V4O12]·5H2O and [Ni(phen)3]2[V4O12]·17.5H2O. J Mol Struct. 2003;650:123–29.CrossrefGoogle Scholar

  • [75]

    Huang M-H, Bi L-H, Dong S-J. Bis[tris(2,2’-bipyridyl-κ2N,N’)iron(II)] cyclo-tetravanadate decahydrate. Acta Cryst. 2004;E60:m153–5.Google Scholar

  • [76]

    Zhang X, You W-S, Zhu Z, Dang L, Sun Z, Zheng Z. Hydrothermal synthesis and characterization of a novel crystal containing [Co4O4]4+ cubane core: [Co4O4(dpaH)4(CH3COO)2]2V4O12 · 5H2O. Inorg Chem Commun. 2006;9:526–8.CrossrefGoogle Scholar

  • [77]

    Tabatabaee M, Ahadiat G, Molčanov K. Tetra-kis(2-amino-4-methyl-pyridinium) cyclo-tetra-μ(2)-oxido-tetra-kis-[dioxido-vanadate(V)] tetrahydrate. Acta Cryst. 2011;E67:m1090.Google Scholar

  • [78]

    Žúrková L, Kucsera R, Gyepes R, Sivák M. Synthesis and X-ray crystal structure of two novel complexes: [MII(phen)3]2V4O12·phen·22H2O(MII=Co, Ni; phen=phenanthroline). Monatsh Chem. 2003;134:1071–79.CrossrefGoogle Scholar

  • [79]

    Morgenstern B, Steinhauser S, Hegetschweiler K. Complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol and related ligands. Inorg Chem. 2004;43:3116–26.CrossrefPubMedGoogle Scholar

  • [80]

    Sharma RP, Singh A, Venugopalan P, Dansby-Sparks R, Xue Z-L, Rosetti S, et al. Stabilization of tetrameric metavanadate ion by tris(1,10-phenanthroline)cobalt(III): synthesis, spectroscopic and X-ray structural study of [Co(phen)3]3(V4O12)2Cl·27H2O. J Coord Chem. 2010;63:3016–27.PubMedCrossrefGoogle Scholar

  • [81]

    Zhang K, Liang -D-D, Wang M-H, Luan GY. Bis[tris(2,2′-bipyridyl-κ2N, N′)cobalt(II)] cyclo-tetravanadate undecahydrate. Acta Cryst. 2013;C69:138–41.Google Scholar

  • [82]

    Miran MS, Kinoshita H, Yasuda T, Susan MABH, Watanabe M. Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids. Phys Chem Chem Phys. 2012;14:5178−86.CrossrefPubMedGoogle Scholar

  • [83]

    Syneček V, Hanic F. The crystal structure of ammonium metavanadate. Cechoslovackij Fiziceskij Zurnal. 1954;4:120–29.Google Scholar

  • [84]

    Oliviera FS, Cabrita EJ, Todorovic S, et al. Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions. Phys Chem Chem Phys. 2016;18:2756–66.CrossrefPubMedGoogle Scholar

  • [85]

    Remsing RC, Swatloski RP, Rogers RD, Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun. 2006;12:1271–73.Google Scholar

  • [86]

    Thorn A, Dittrich B, Sheldrick GM. Enhanced rigid bond restraints. Acta Cryst Sect A Found Crystallogr. 2012;68:448–51.CrossrefGoogle Scholar

  • [87]

    APEX 2 AXScale and SAINT, version. Madison, WI: Bruker AXS, Inc.; 2010.Google Scholar

  • [88]

    Sheldrick GM. SHELXTL, structure determination software suite, v.6.10. Madison, WI: Bruker AXS Inc; 2001.Google Scholar

  • [89]

    Macrae CF, Bruno IJ, Chisholm JA, Wood PA, Mercury CSD. 2.0 – new features for the visualization and investigation of crystal structures. J Appl Cryst. 2008;41:466–70.CrossrefGoogle Scholar

About the article

Published Online: 2018-05-31

Citation Information: Physical Sciences Reviews, Volume 3, Issue 8, 20170190, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0190.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in