Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

See all formats and pricing
More options …

Wastes generated by automotive industry – Spent automotive catalysts

Martyna Rzelewska
  • Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo St. 4, 60-965, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Regel-Rosocka
  • Corresponding author
  • Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo St. 4, 60-965, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-11 | DOI: https://doi.org/10.1515/psr-2018-0021


Rhodium, ruthenium, palladium, and platinum are classified as platinum group metals (PGM). A demand for PGM has increased in recent years. Their natural sources are limited, therefore it is important, and both from economical and environmental point of view, to develop effective process to recover PGM from waste/secondary sources, such as spent automotive catalysts. Pyrometallurgical methods have always been used for separation of PGM from various materials. However, recently, an increasing interest in hydrometallurgical techniques for the removal of precious metals from secondary sources has been noted. Among them, liquid-liquid extraction by contacting two liquid phases: aqueous solution of metal ions and organic solution of extractant is considered an efficient technique to separate valuable metal ions from solutions after leaching from spent catalysts.

Keywords: automotive catalyst; metal recovery; platinum group metals (PGMs)


  • [1]

    Johnson Matthey base prices of platinum group metals. Available at: www.platinum.matthey.com. Accessed: September 10, 2017.

  • [2]

    Brown TJ, Wrighton CE, Raycraft ER, et al. World mineral production 2009–13. Keyworth: Nottingham British Geological Survey, 2015.Google Scholar

  • [3]

    Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Extractive metallurgy of nickel, cobalt and platinum-group metals. Oxford: Elsevier, 2011.Google Scholar

  • [4]

    Saternus M, Fornalczyk A. An used auto catalytic converters as a source of PGM. Rudy Metale. 2009;54(2):59–67.Google Scholar

  • [5]

    Godlewska-Żyłkiewicz B, Pyrzyńska K. Platynowce – zastosowanie i metody oznaczania. (PGM – application and methods of determination). Warszawa: Wydawnictwo MALAMUT, 2012 (in Polish).Google Scholar

  • [6]

    PGM Applications, International Platinum Group Metals Association. Available at: http://ipa-news.com/index/pgm-applications/?PHPSESSID=9d78cf16444ff2af103bb7b091dfdacd. Accessed August 1, 2017.

  • [7]

    Wołowicz A. Use of palladium and its compounds with particular consideration of catalysis. Przem Chem. 2013;92(7):1237–45 (in Polish).Google Scholar

  • [8]

    Froehlich P, Lorenz T, Martin G, Brett B, Bertau B. Valuable metals-recovery processes, current trends and recycling strategies. Angew Chem Int Ed. 2017;56:2544–80.CrossrefGoogle Scholar

  • [9]

    Cieszyńska A, Regel-Rosocka M, Wiśniewski M. Extractive methods for recovery and separation of noble metals. Przem Chem. 2011;90(8):1579–85 (in Polish).Google Scholar

  • [10]

    Eskina VV, Dalnova OA, Filatova DG, Baranovskaya VB, Karpov YA. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S,N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta. 2016;159:103–10.CrossrefPubMedGoogle Scholar

  • [11]

    Serry MA, Abd El-Raof FM, Ahmed SE. Composition and properties of traditional cordierite-mullite ceramics for thermo-mechanical applications. Int Ceramic Rev. 2011;39–43.Google Scholar

  • [12]

    Hoffmann JE. Recovering platinum-group metals from auto catalysts. JOM. 1988;40:40–4.CrossrefGoogle Scholar

  • [13]

    Umicore Precious Metals Refining. Available at: http://pmr.umicore.com/en/metals-products/precious-metals/. Accessed August 23, 2017.

  • [14]

    Fornalczyk A, Saternus M. Removal of platinum group metals from the used auto catalytic converter. Metalurgija. 2009;48(2):133–6.Google Scholar

  • [15]

    Hagelüken C. Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. World Metall – Erzmet. 2006;59(3):152–61.Google Scholar

  • [16]

    Willner J, Fornalczyk A. Electronic scraps as a source of precious metals. Przem Chem. 2012;91(4):517–22 (in Polish).Google Scholar

  • [17]

    Ahmed IM, Nayl AA, Daoud JA. Extraction of palladium from nitrate solutions by CYANEX 471X. Int J Miner Process Processing. 2011;101:89–93.CrossrefGoogle Scholar

  • [18]

    Gupta B, Singh I. Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their recovery from real samples. Hydrometallurgy. 2013;134–135:11–8.Google Scholar

  • [19]

    Lee JY, Raju B, Nagaphani Kumar B, Rajesh Kumar J, Park HK, Ramachandra Reddy B. Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Sep Purif Technol. 2010;73:213–8.CrossrefGoogle Scholar

  • [20]

    Nguyen TH, Sonu CH, Lee MS. Separation of Pt(IV), Pd(II), Rh(III) and Ir(IV) from concentrated hydrochloric acid solutions by solvent extraction. Hydrometallurgy. 2016;164:71–7.CrossrefGoogle Scholar

  • [21]

    Panigrahi S, Dash T, Nathsarma KC, Sarangi K. Extraction of ruthenium using both tertiary and quaternary amine from chloride media. Sep Sci Technol. 2014;49:545–52.CrossrefGoogle Scholar

  • [22]

    Lee JY, Kumar JR, Kim JS, Kim DJ, Yoon HS. Extraction and separation of Pt(IV)/Rh(III) from acidic chloride solutions using Aliquat 336. J Ind Eng Chem. 2009;15:359–64.CrossrefGoogle Scholar

  • [23]

    Lee JM. Extraction of noble metal ions from aqueous solutions by ionic liquid. Fluid Phase Equilib. 2012;319:30–6.CrossrefGoogle Scholar

  • [24]

    Rzelewska M, Janiszewska M, Regel-Rosocka M. Application of quaternary phosphonium salts as extractants of Ru(III) and Rh(III) from model aqueous solutions. Chemik. 2016;70:375–7.Google Scholar

  • [25]

    Rzelewska M, Wiśniewski M, Regel-Rosocka M. Effect of composition and ageing of chloride solutions on extraction of Rh(III) and Ru(III) with phosphonium ionic liquids Cyphos IL 101 and IL 104. Sep Sci Technol. 2017. DOI: .CrossrefGoogle Scholar

  • [26]

    Rzelewska M, Baczyńska M, Wiśniewski M, Regel-Rosocka M. Phosphonium ionic liquids as extractants for recovery of ruthenium(III) from acidic aqueous solutions. Chem Pap. 2016;71:1065–72.Google Scholar

  • [27]

    Regel-Rosocka M, Rzelewska M, Baczyńska M, Janus M, Wiśniewski M. Removal of palladium(II) from aqueous chloride solutions with Cyphos phosphonium ionic liquids as metal ion carriers from liquid-liquid extraction and transport across polymer inclusion membranes. Physicochem Probl Miner Process. 2015;51:621–31.Google Scholar

  • [28]

    Cieszynska A, Wisniewski M. Extraction of palladium(II) from chloride solutions with Cyphos®IL 101/toluene mixtures as novel extractant. Sep Purif Technol. 2010;73:202–7.CrossrefGoogle Scholar

  • [29]

    Cieszynska A, Wisniewski M. Selective extraction of palladium(II) from hydrochloric acid solutions with phosphonium extractants. Sep Purif Technol. 2011;80:385–9.CrossrefGoogle Scholar

  • [30]

    Cieszynska A, Wisniewski M. Extractive recovery of palladium(II) from hydrochloric acid solutions with Cyphos IL 104. Hydrometallurgy. 2012;113:79–85.Google Scholar

  • [31]

    Sasaki K, Takao K, Suzuki T, Mori T, Arai T, Ikeda Y. Extraction of Pd(II), Rh(III) and Ru(III) from HNO3 aqueous solutions to betainium bis(trifluoromthanesulfonyl)imide ionic liquid. Dalton Trans. 2014;43:5648–51.CrossrefGoogle Scholar

  • [32]

    Narita H, Morisaku K, Tamura K, et al. Extraction properties of palladium(II) in HCl solution with sulfide-containing monoamide compounds. Ind Eng Chem Res. 2014;53:3636–40.CrossrefGoogle Scholar

  • [33]

    Narita H, Morisaku K, Tanaka M. Highly efficient extraction of rhodium(III) from hydrochloric acid solution with amide-containing tertiary amine compounds. Solvent Extr Ion Exch. 2015;33(4):407–17.CrossrefGoogle Scholar

  • [34]

    Chmielewski T. Ługowanie metali z rud, koncentratów, półproduktów i odpadów. (Leaching of metals from ores, concentrates, intermediates and waste). Physicochem Probl Miner Process. 1996;30:217–31 (in Polish).Google Scholar

  • [35]

    Gupta CK. Chemical metallurgy: principles and practice. Weinheim: Wiley-Vch Verlag GmbH & Co. KGaA, 2003.Google Scholar

  • [36]

    Kucharski M. Recykling metali nieżelaznych. (Recycling of non-ferrous metals). Kraków: Wydawnictwa AGH, 2010 (in Polish).Google Scholar

  • [37]

    Brandl H, Bosshard R, Wegmann M. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy. 2011;59:319–26.Google Scholar

  • [38]

    Szubert A, Grotowski A. Nowoczesne metody przeróbki rud miedzionośnych. (Modern methods of copper ore processing) Rudy Metale. 2008;53(8):467–72 (in Polish).Google Scholar

  • [39]

    Jadhav UU, Hocheng H. A review of recovery of metals from industrial waste. J Achievements Mater Manuf Eng. 2012;54(2):159–67.Google Scholar

  • [40]

    Kirichenko AS, Seregin AN, Volkov AI. Developing a technology for recycling automotive exhaust-gas catalysts. Metallurgist. 2014;58(3-4):250–5.CrossrefGoogle Scholar

  • [41]

    Suoranta T, Zugazua O, Niemela M, Peramaki P. Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy. 2015;154:56–62.CrossrefGoogle Scholar

  • [42]

    Fornalczyk A, Kraszewski M, Willner J, et al. Dissolution of metal supported spent auto catalysts in acids. Arch Metall Mater. 2016;61(1):233–6.CrossrefGoogle Scholar

  • [43]

    Barakat MA, Mahmoud MHH. Recovery of platinum from spent catalyst. Hydrometallurgy. 2004;72:179–84.CrossrefGoogle Scholar

  • [44]

    Kim CH, Woo SI, Jeon SH. Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination. Ind Eng Chem Res. 2000;39:1185–92.CrossrefGoogle Scholar

  • [45]

    Kasuya R, Miki T, Morikawa H, Tai Y. Dissolution of platinum in catalyst materials using hydrochloric acid: a new method based on the use of complex oxides. Miner Eng. 2016;87:25–31.CrossrefGoogle Scholar

  • [46]

    Hennion FJ. Availability of precious metals from spent catalysts. Platinum group metals – an in depth view of the industry. Williamsburg, VA, USA: IPMI Seminar; 1983.Google Scholar

  • [47]

    Meng X, Han KN Recovery of platinum and palladium from spent automobile catalytic converters by leaching with solutions containing halogen salts, ammonium and oxidants. Proceedings of the 1995 TMS Fall Symposium, Point Clear, AL, USA, TMS, 1995.Google Scholar

  • [48]

    Dong H, Zhao J, Chen J, Wu Y, Li B. Recovery of platinum metals from spent catalysts: a review. Int J Miner Process. 2015;145:108–13.CrossrefGoogle Scholar

  • [49]

    Pośpiech B. The hydrometallurgical technology for recovery of precious and non-ferrous metals from spent catalysts. Przem Chem. 2012;91(10):2008–10 (in Polish).Google Scholar

  • [50]

    Dragulovic S, Ljubomirovic Z, Stanojevic Simsic Z, et al. Recovery of rhodium from secondary raw materials for usage in electronic devices. Optoelectron Adv Mat. 2011;5(12):1370–5.Google Scholar

  • [51]

    Sun P, Lee M. Recovery of platinum from chloride leaching solution of spent catalysts by solvent extraction. Mater Trans. 2013;54(1):74–80.CrossrefGoogle Scholar

  • [52]

    Sun P, Lee M. Recovery of platinum from spent petroleum catalysts by a hydrometallurgical method. Korean J Met Mater. 2013;51(12):873–81.CrossrefGoogle Scholar

  • [53]

    Jha MK, Lee J, Kim M, Jeong J, Kim BS, Kumar V. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometallurgy. 2013;133:23–32.CrossrefGoogle Scholar

  • [54]

    Pośpiech B. Studies on platinum recovery from solutions after leaching of spent catalysts by solvent extraction. Physicochem Problem Miner Process. 2012;48(1):239–46.Google Scholar

  • [55]

    Fornalczyk A. Industrial catalysts as a source of valuable metals. J Achievements Mater Manuf Eng. 2012;55(2):864–9.Google Scholar

  • [56]

    Jimenez De Aberasturi D, Pinedo R, Ruiz De Larramendi I, Ji RDL, Rojo T. Recovery by hydrometallurgical extraction of the platinum-group metals from car catalythic converters. Miner Eng. 2011;24:505–13.CrossrefGoogle Scholar

  • [57]

    Nogueira CA, Paiva AP, Oliveira PC, Costa MC. Rosa da Costa AM. Oxidative leaching process with cupric ion in hydrochloric acid mediafor recovery of Pd and Rh from spent catalytic converters. J Hazard Mater. 2014;278:82–90.CrossrefGoogle Scholar

  • [58]

    Trinh HB, Lee JC, Srivastava RR, Kim S, Ilyas S. Eco-threat minimization in HCl leaching of PGMs from spent automobile catalysts by formic acid prereduction. ACS Sustainable Chem Eng. 2017;5:7302−9.CrossrefGoogle Scholar

  • [59]

    Schoeman E, Bradshaw SM, Akdogan G, Snyders CA, Eksteen JJ. The extraction of platinum and palladium from a synthetic cyanide heap leach solution with strong base anion exchange resins. Int J Miner Process. 2017;162:27–35.CrossrefGoogle Scholar

  • [60]

    Boliński L Platinum and rhodium recovery from scrapped automotive catalyst by oxidative acid chloride leaching. MSc thesis. Department of Mining and Metallurgical Engineering, McGill University, Montreal, Canada, 1991.Google Scholar

  • [61]

    Regel-Rosocka M, Wisniewski M, Borowiak-Resterna A, Cieszynska A, Sastre AM. Selective extraction of palladium(II) from hydrochloric acid solutions with pyridinecarboxamides and ACORGA®CLX50. Sep Purif Technol. 2007;53:337–41.CrossrefGoogle Scholar

  • [62]

    Malik P, Paiva AP. A novel solvent extraction route for the mutual separation of platinum, palladium and rhodium in hydrochloric acid media. Solvent Extr Ion Exch. 2011;28:49–72.Google Scholar

  • [63]

    Pietrelli L, Fontana D. Automotive spent catalysts treatment and platinum recovery. Int J Environ Waste Manage. 2013;11(2):222–31.CrossrefGoogle Scholar

  • [64]

    Jaree A, Khunphakdee N. Separation of concentrated platinum(IV) and rhodium(III) on acidic chloride solution via liquid-liquid extraction using tri-octylamine. J Ind Eng Chem. 2011;17:243–7.CrossrefGoogle Scholar

  • [65]

    Yin CY, Nikoloski AN, Wang MW. Microfluidic solvent extraction of platinum and palladium from a chloride leach solution using Alamine 336. Miner Eng. 2013;45:18–21.CrossrefGoogle Scholar

  • [66]

    Gemini Industries Incorporated. Available at: http://www.gemini-catalyst.com/ourProcess.htm. Accessed September 20, 2017.

  • [67]

    Morcali MH, Zeytuncu B, Aktas S, Yucel O, Gulluoglu AN. Platinum adsorption from chloride media using carbonized biomass and commercial sorbent. Min Metall Proc. 2013;30:129–36.Google Scholar

  • [68]

    Navarro R, Garcia E, Saucedo I, Guibal E. Platinum(IV) recovery from HCl solutions using Amberlite XAD-7 impregnated with a tetraalkyl phosphonium ionic liquid. Sep Sci Technol. 2012;47:2199–210.Google Scholar

  • [69]

    Navarro R, Saucedo I, Gonzalez C, Guibal E. Amberlite XAD-7 impregnated with Cyphos IL-101 (tetraalkylphosphonium ionic liquid) for Pd(II) recovery from HCl solutions. Chem Eng J. 2012;185:226–35.Google Scholar

  • [70]

    Wołowicz A, Hubicki Z. Sorption of palladium(II) complexes onto the styrene-divinylbenzene anion exchange resins. Chem Eng J. 2009;152:72–9.CrossrefGoogle Scholar

  • [71]

    Morcali MH, Zeytuncu B. Investigation of adsorption parameters for platinum and palladium onto a modified polyacrylonitrile-based sorbent. Int J Miner Proc. 2015;137:52–8.CrossrefGoogle Scholar

  • [72]

    Ricoux Q, Bocokić V, Méricq JP, Bouyer D, Zutphen S, Faur C. Selective recovery of palladium using an innovative functional polymer containing phosphine oxide. Chem Eng J. 2015;264:772–9.CrossrefGoogle Scholar

  • [73]

    Wołowicz A, Hubicki Z. Ion exchange recovery of palladium(II) from acidic solutions using monodisperse Lewatit SR-7. Ind Eng Chem Res. 2012;51:16688−96.CrossrefGoogle Scholar

  • [74]

    Wołowicz A, Hubicki Z. Polyacrylate ion exchangers in sorption of noble and base metal ions from single and tertiary component solutions. Solvent Extr Ion Exch. 2014;32:189–205.CrossrefGoogle Scholar

  • [75]

    Wołowicz A, Hubicki Z. Applicability of new acrylic, weakly basic anion exchanger Purolite A-830 of very high capacity in removal of palladium(II) chlorocomplexes. Ind Eng Chem Res. 2012;51:7223−30.CrossrefGoogle Scholar

  • [76]

    Wołowicz A, Hubicki Z. Investigation of macroporous weakly basic anion exchangers applicability in palladium(II) removal from acidic solutions – batch and column studies. Chem Eng J. 2011;174:510–21.CrossrefGoogle Scholar

  • [77]

    Sayın M, Can M, Imamoglu M, Arslan M. 1,3,5-Triazine-pentaethylenehexamine polymer for the adsorption of palladium(II) from chloride-containing solutions. React Funct Polym. 2015;88:31–8.CrossrefGoogle Scholar

  • [78]

    Kasaini H, Everson RC, Bruinsma OSL. Selective adsorption of platinum from mixed solutions containing base metals using chemically modified activated carbons. Sep Sci Technol. 2005;40:507–23.CrossrefGoogle Scholar

  • [79]

    Sharma S, Rajesh N. Augmenting the adsorption of palladium from spent catalyst using a thiazole ligand tethered on an amine functionalized polymeric resin. Chem Eng J. 2016;283:999–1008.CrossrefGoogle Scholar

  • [80]

    Nagarjuna R, Sharma S, Rajesh N, Ganesan R. Effective adsorption of precious metal palladium over polyethyleneimine-functionalized alumina nanopowder and its reusability as a catalyst for energy and environmental applications. ACS Omega. 2017;2:4494−504.CrossrefGoogle Scholar

  • [81]

    Zhang C, Huang K, Yu P, Liu H. Ionic liquid based three-liquid-phase partitioning and one-step separation of Pt(IV), Pd(II) and Rh(III). Sep Purif Technol. 2013;108:166–73.CrossrefGoogle Scholar

  • [82]

    Siame J, Kasaini H Selective precipitation of Pt and base metals in liquid-liquid chloride systems. International Conference and Environmental Engineering (ICCEE’ 2013), Johannesburg, South Africa, 2013, 88–94.Google Scholar

  • [83]

    Johnson Matthey. The process of PGM refining. Available at: http://www.jmrefining.com/the-process. Accessed October 10, 2017.

  • [84]

    Zhang L, Xu Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J Clean Prod. 2016;127:19–36.CrossrefGoogle Scholar

  • [85]

    Yong P, Rowson NA, Farr JPG, Harris LR, Macaskie LE. A novel electrobiotechnology for the recovery of precious metals from spent automotive catalysts. Environ Technol. 2003;24:289–97.CrossrefPubMedGoogle Scholar

  • [86]

    Priya A, Hait S. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res. 2017;24:6989–7008.CrossrefGoogle Scholar

  • [87]

    Tributsch H. Direct versus indirect bioleaching. Hydrometallurgy. 2001;59:177–85.CrossrefGoogle Scholar

  • [88]

    Murray AJ, Zhu J, Wood J, Macaskie LE. A novel biorefinery: Biorecovery of precious metals from spent automotive catalyst leachates into new catalysts effective in metal reduction and in the hydrogenation of 2-pentyne. Min Eng. 2017;113:102–8.CrossrefGoogle Scholar

  • [89]

    Godlewska-Żyłkiewicz B. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectrochim Acta B. 2003;58:1531–40.CrossrefGoogle Scholar

  • [90]

    Dziwulska U, Bajguz A, Godlewska-Żyłkiewicz B. The use of algae Chlorella vulgaris immobilized on Cellex-T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination. Anal Lett. 2004;37:2189–203.CrossrefGoogle Scholar

  • [91]

    Akcil A, Veglio F, Ferella F, Okudan MO, Tuncuk A. A review of metal recovery from spent petroleum catalysts and ash. Waste Manage. 2015;45:420–33.CrossrefGoogle Scholar

  • [92]

    Willner J, Kaduková J, Fornalczyk A, Mrážiková A, Marcinčáková R, Velgosová O. Possibilities of metals extracton from spent metallic automotive catalytic converters by using biometallurgical method. Arch Metall Mater. 2015;60:1877–90.CrossrefGoogle Scholar

  • [93]

    Das N. Recovery of precious metals through biosorption – A review. Hydrometallurgy. 2010;103:180–9.CrossrefGoogle Scholar

  • [94]

    De Vargas I, Macaskie LE, Guibal E. Biosorption of palladium and platinum by sulfate-reducing bacteria. J Chem Technol Biotechnol. 2002;79:49–56.Google Scholar

  • [95]

    Gadd GM. Bioremedial potential of microbial mechanisms of metal mobilisation and immobilisation. Curr Opin Biotechnol. 2000;11:271–9.CrossrefPubMedGoogle Scholar

  • [96]

    White C, Wilkinson SC, Gadd GM. The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegrad. 1995;35:17–40.CrossrefGoogle Scholar

  • [97]

    Kashefi K, Tor JM, Nevin KP, Lovley DR. Reductive precipitation of gold by dissimlatory Fe(III)-reducing Bacteria and Archaea. Appl Environ Microbiol. 2001;67:3275–9.PubMedCrossrefGoogle Scholar

  • [98]

    Chassary P, Vincent T, Marcano JS, Macaskie LE, Guibal E. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy. 2005;76:131–47.CrossrefGoogle Scholar

  • [99]

    Mack CL, Wilhelmi B, Duncan JR, Burgess JE. A kinetic study of the recovery of platinum ions from an artificial aqueous solution by immobilized Saccharomyces cerevisiae biomass. Miner Eng. 2008;21:31–7.CrossrefGoogle Scholar

  • [100]

    Creamer NJ, Baxter-Plant VS, Henderson J, Potter M, Macaskie LE. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol Lett. 2006;28:1475–84.CrossrefPubMedGoogle Scholar

  • [101]

    Colica G, Caparrotta S, De Philippis R. Selective biosorption and recovery of ruthenium from industrial effluents with Rhodopseudomonas palustris strains. Appl Microbiol Biotechnol. 2012;95:381–7.PubMedCrossrefGoogle Scholar

  • [102]

    Mack CL, Wilhelmi B, Duncan JR, Burgess JE. Biosorptive recovery of platinum from platinum group metal refining wastewaters by immobilised Saccharomyces cerevisiae. Water Sci Technol. 2011;63(1):149–55.PubMedCrossrefGoogle Scholar

  • [103]

    Dimitriadis S, Nomikou N, McHale AP. Pt-based electro-catalytic materials derived from biosorption processes and their exploitation in fuel cell technology. Biotechnol Lett. 2007;29:545–51.CrossrefPubMedGoogle Scholar

  • [104]

    Zhou L, Xu J, Liang X, Liu Z. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J Hazard Mater. 2010;182:518–24.PubMedCrossrefGoogle Scholar

  • [105]

    Baba Y, Noma H, Nakayama R, Matsushita Y. Preparation of chitosan derivatives containing methylthiocarbamoyl and phenylthiocarbamoyl groups and their selective adsorption of copper(II) over iron(III). Anal Sci. 2002;18:359–61.PubMedCrossrefGoogle Scholar

  • [106]

    Fujiwara K, Ramesh A, Maki T, Hasegawa H, Ueda K. Adsorption of platinum(IV), palladium(II) and gold(III) from aqueous solutions onto L-lysine modified crosslinked chitosan resin. J Hazard Mater. 2007;146:39–50.PubMedCrossrefGoogle Scholar

  • [107]

    Won SW, Park J, Mao J, Yun YS. Utilization of PEI modified corynebacterium glutamicum biomass for the recovery of Pd(II) in hydrochloric solution. Bioresour Technol. 2011;102:3888−93.CrossrefPubMedGoogle Scholar

  • [108]

    Wang S, Vincent T, Roux JC, Faur C, Guibal E. Pd(II) and Pt(IV) sorption using alginate and algal-based beads. Chem Eng J. 2017;313:567–79.CrossrefGoogle Scholar

  • [109]

    Wang S, Vincent T, Roux JC, Faur C, Guibal E. Innovative conditioning of algal-based sorbents: Macro-porous discs for palladium sorption. Chem Eng J. 2017;325:521–32.CrossrefGoogle Scholar

  • [110]

    Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol. 2004;38:43–74.CrossrefGoogle Scholar

  • [111]

    Guibal E, Vincent T. Palladium recovery from dilute effluents using biopolymer-immobilized extractant. Sep Sci Technol. 2006;41:2533–53.CrossrefGoogle Scholar

  • [112]

    Vincent T, Guibal E, Chiarizia R. Palladium recovery by reactive precipitation using a Cyanex 301-based stable emulsion. Sep Sci Technol. 2007;42:3517–36.CrossrefGoogle Scholar

  • [113]

    Sharififard H, Soleimani M, Zokaee Ashtiani F. Evaluation of activated carbon and bio-polymer modified activated carbon performance for palladium and platinum removal. J Taiwan Inst Chem Eng. 2012;43:696–703.CrossrefGoogle Scholar

  • [114]

    Anbia M, Rahimi F. Adsorption of platinum(IV) from an aqueous solution with magnetic cellulose functionalized with thiol and amine as a nano-active adsorbent. J Appl Polym Sci. 2017;134:45361.CrossrefGoogle Scholar

  • [115]

    Redwood MD, Deplanche K, Yong P, Baxter-Plant VS, Macaskie LE Biomass-supported palladium catalysts on Desulfovibrio and Rhodobacter. In: Harrison STL, Rawlings DE, Petersen J, editors. Proceedings of 16th International Biohydrometallurgy Symposium, Cape Town, South Africa, 2005: 335–42.Google Scholar

  • [116]

    Lloyd JR, Yong P, Macaskie LE. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol. 1998;64:4607–9.PubMedGoogle Scholar

  • [117]

    Yong P, Mikheenko IP, Deplanche K, Redwood MD, Macaskie LE. Biorefining of precious metals from wastes: an answer to manufacturing of cheap nanocatalysts for fuel cells and power generation via an integrated biorefinery? Biotechnol Lett. 2010;32:1821–8.CrossrefPubMedGoogle Scholar

  • [118]

    Humphries AC, Mikheenko IP, Macaskie LE. Chromate reduction by immobilized palladized sulfate-reducing bacteria. Biotechnol Bioeng. 2006;94(1):81–90.PubMedCrossrefGoogle Scholar

  • [119]

    Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE. Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol. 2002;77:593–601.CrossrefGoogle Scholar

  • [120]

    Baxter-Plant VS, Mikheenko IP, Macaskie LE. Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation. 2003;14:83–90.CrossrefPubMedGoogle Scholar

  • [121]

    Deplanche K, Snape TJ, Hazrati S, Harrad S, Macaskie LE. Versatility of a new bioinorganic catalyst: Palladized cells of Desulfovibrio desulfuricans and application to dehalogenation of flame retardant materials. Environ Technol. 2009;30:681–92.CrossrefPubMedGoogle Scholar

  • [122]

    Mabbett AN, Sanyahumbi D, Yong P, Macaskie LE. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application. Environ Sci Technol. 2006;40:1015–21.CrossrefPubMedGoogle Scholar

  • [123]

    Yong P, Liu W, Zhang Z, Beauregard D, Johns ML, Macaskie LE. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction. Biotechnol Lett. 2015;37:2181–91.CrossrefPubMedGoogle Scholar

  • [124]

    Macaskie LE, Mikheenko IP, Yong P, et al. Today’s wastes, tomorrow’s materials for environmental protection. Hydrometallurgy. 2010;104:483–7.CrossrefGoogle Scholar

About the article

Published Online: 2018-05-11

This work was supported by the 03/32/DSPB/0810 grant.

Citation Information: Physical Sciences Reviews, Volume 3, Issue 8, 20180021, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2018-0021.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in