Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Physical Sciences Reviews

Ed. by Giamberini, Marta / Jastrzab, Renata / Liou, Juin J. / Luque, Rafael / Nawab, Yasir / Saha, Basudeb / Tylkowski, Bartosz / Xu, Chun-Ping / Cerruti, Pierfrancesco / Ambrogi, Veronica / Marturano, Valentina / Gulaczyk, Iwona

Online
ISSN
2365-659X
See all formats and pricing
More options …

Micro-Raman spectroscopy in medicine

Christoph Krafft / Jürgen Popp
  • Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
  • Institute of Physical Chemistry and Abbe Center of Photonics, University Jena, Helmholtzweg 4, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-08-30 | DOI: https://doi.org/10.1515/psr-2017-0047

Abstract

A potential role of optical technologies in medicine including micro-Raman spectroscopy is diagnosis of bacteria, cells and tissues which is covered in this chapter. The main advantage of Raman-based methods to complement and augment diagnostic tools is that unsurpassed molecular specificity is achieved without labels and in a nondestructive way. Principles and applications of micro-Raman spectroscopy in the context of medicine will be described. First, Raman spectra of biomolecules representing proteins, nucleic acids, lipids and carbohydrates are introduced. Second, microbial applications are summarized with the focus on typing on species and strain level, detection of infections, antibiotic resistance and biofilms. Third, cytological applications are presented to classify single cells and study cell metabolism and drug–cell interaction. Fourth, applications to tissue characterization start with discussion of lateral resolution for Raman imaging followed by Raman-based detection of pathologies and combination with other modalities. Finally, an outlook is given to translate micro-Raman spectroscopy as a clinical tool to solve unmet needs in point-of-care applications and personalized treatment of diseases.

Keywords: Biomedical spectroscopy; biophotonics; microbiology; cytology; histopathology

References

  • [1]

    Krafft C, von Eggeling F, Guntinas-Lichius O, Hartmann A, Waldner MJ, Neurath MF, et al. Ex-vivo and in vivo optical molecular pathology. J Biophotonics. 2018;11:e201700236.CrossrefGoogle Scholar

  • [2]

    De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc. 2007;38:1133–47.CrossrefGoogle Scholar

  • [3]

    Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Meth. 2002;51:255–71.CrossrefGoogle Scholar

  • [4]

    Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Del Rev. 2015;89:105–20.CrossrefGoogle Scholar

  • [5]

    Ramoji A, Galler K, Glaser U, Henkel T, Mayer G, Dellith J, et al. Characterization of different substrates for Raman spectroscopic imaging of eukaryotic cells. J Raman Spectrosc. 2016;47:773–86.CrossrefGoogle Scholar

  • [6]

    Pahlow S, Kloß S, Blättel V, Kirsch K, Hübner U, Cialla D, et al. Isolation and enrichment of pathogens with a surface‐modified aluminium chip for Raman spectroscopic applications. Chem Phys Chem. 2013;14:3600–5.CrossrefPubMedGoogle Scholar

  • [7]

    Maquelin K, Choo-Smith L-P, Endtz HP, Bruining H, Puppels G. Rapid identification of Candida species by confocal Raman microspectroscopy. J Clin Microbiol. 2002;40:594–600.PubMedCrossrefGoogle Scholar

  • [8]

    Buijtels PC, Willemse-Erix H, Petit P, Endtz HP, Puppels GJ, Verbrugh HA, et al. Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol. 2008;46:961–5.CrossrefPubMedGoogle Scholar

  • [9]

    Rebrošová K, Šiler M, Samek O, Ruzicka F, Bernatova S, Hola V., et al. Rapid identification of staphylococci by Raman spectroscopy. Sci Rep. 2017;7:14846.PubMedCrossrefGoogle Scholar

  • [10]

    Wulf M, Willemse-Erix D, Verduin C, Puppels G, van Belkum A, Maquelin K. The use of Raman spectroscopy in the epidemiology of methicillin-resistant Staphylococcus aureus of human-and animal-related clonal lineages. Clin Microbiol Infect. 2012;18:147–52.CrossrefPubMedGoogle Scholar

  • [11]

    Te Witt R, Vaessen N, Melles D, Lekkerkerk WS, van der Zwaan EA, Zandijk WH, et al. Good performance of the SpectraCellRA system for typing of methicillin-resistant staphylococcus aureus isolates. J Clin Microbiol. 2013;51:1434–8.CrossrefPubMedGoogle Scholar

  • [12]

    Kloss S, Kampe B, Sachse S, Rösch P, Straube E, Pfister W, Kiehntopf M, Popp J. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem. 2013;85:9610–6.PubMedCrossrefGoogle Scholar

  • [13]

    Schröder U-C, Ramoji A, Glaser U, Sachse S, Leiterer C, Csaki A, et al. Combined dielectrophoresis-Raman setup for the classification of pathogens recovered from the urinary tract. Anal Chem. 2013;85:10717–24.PubMedCrossrefGoogle Scholar

  • [14]

    Harz M, Kiehntopf M, Stöckel S, Rösch P, Straube E, Deufel T, et al. Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro‐Raman spectroscopy. J Biophotonics. 2009;2:70–80.CrossrefPubMedGoogle Scholar

  • [15]

    Willemse-Erix DF, Scholtes-Timmerman MJ, Jachtenberg J-W, van Leeuwen WB, Horst–Kreft D, Bakker Schut TC, et al. Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol. 2009;47:652–9.PubMedCrossrefGoogle Scholar

  • [16]

    Kirschner C, Maquelin K, Pina P, Ngo Thi NA, Choo-Smith LP, Sockalingum GD, et al. Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol. 2001;39:1763–70.PubMedCrossrefGoogle Scholar

  • [17]

    Große C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, et al. Label-free imaging and spectroscopic analysis of intracellular bacterial infections. Anal Chem. 2015;87:2137–42.CrossrefPubMedGoogle Scholar

  • [18]

    Voor in ‘T Holt AF, Severin JA, Goessens WH, Te Witt R, Vos MC. Instant typing is essential to detect transmission of extended-spectrum beta-lactamase-producing Klebsiella species. PLoS One. 2015;10:e0136135.Google Scholar

  • [19]

    Assmann C, Kirchhoff J, Beleites C, Hey J, Kostudis S, Pfister W, et al. Identification of vancomycin interaction with Enterococcus faecalis within 30 min of interaction time using Raman spectroscopy. Anal Bioanal Chem. 2015;407:8343–52.CrossrefPubMedGoogle Scholar

  • [20]

    Dekter H, Orelio C, Morsink M, Tektas S, Vis B, Te Witt R, et al. Antimicrobial susceptibility testing of Gram-positive and-negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy. Euro J Clin Microbiol Infectious Diseas. 2017;36:81–9.CrossrefGoogle Scholar

  • [21]

    Athamneh A, Alajlouni R, Wallace R, Seleem M, Senger R. Phenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy. Antimicrob Agents Chemother. 2014;58:1302–14.CrossrefPubMedGoogle Scholar

  • [22]

    Schröder UC, Kirchhoff J, Hübner U, Mayer G, Glaser U, Henkel T, et al. On‐chip spectroscopic assessment of microbial susceptibility to antibiotics within 3.5 hours. J Biophotonics. 2017;10:1547–57.PubMedCrossrefGoogle Scholar

  • [23]

    Beier BD, Quivey RG, Berger AJ. Identification of different bacterial species in biofilms using confocal Raman microscopy. J Biomed Opt. 2010;15:066001.PubMedCrossrefGoogle Scholar

  • [24]

    Muhamadali H, Chisanga M, Subaihi A, Goodacre R. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels. Anal Chem. 2015;87:4578–86.CrossrefPubMedGoogle Scholar

  • [25]

    Hildebrandt ER, Cozzarelli NR. Comparison of recombination in vitro and in E. coli cells: measure of the effective concentration of DNA in vivo. Cell. 1995;81:331–40.CrossrefGoogle Scholar

  • [26]

    Schie IW, Kiselev R, Krafft C, Popp J. Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification. Analyst. 2016;141:6387–95.PubMedCrossrefGoogle Scholar

  • [27]

    Puppels GJ, Olminkhof JH, Segers-Nolten GM, Otto C, De Mul FF, Greve J. Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light. Exp Cell Res. 1991;195:361–7.CrossrefPubMedGoogle Scholar

  • [28]

    Notingher I, Verrier S, Romanska H, Bishop AE, Polak JM, Hench LL. In situ characterisation of living cells by Raman spectroscopy. Spectros (Amsterdam, Netherlands). 2002;15:43.Google Scholar

  • [29]

    Pavillon N, Hobro AJ, Smith NI. Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging. Biophys J. 2013;105:1123–32.CrossrefPubMedGoogle Scholar

  • [30]

    Pavillon N, Smith NI. Implementation of simultaneous quantitative phase with Raman imaging. EPJ Tech Instrum. 2015;2:5.CrossrefGoogle Scholar

  • [31]

    Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11:664.CrossrefPubMedGoogle Scholar

  • [32]

    Neugebauer U, Clement JH, Bocklitz T, Krafft C, Popp J. Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J Biophotonics. 2010;3:579–87.CrossrefPubMedGoogle Scholar

  • [33]

    Neugebauer U, Bocklitz T, Clement JH, Krafft C, Popp J. Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst. 2010;135:3178–82.PubMedCrossrefGoogle Scholar

  • [34]

    Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Mayer G, et al. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip. 2011;11:1484–90.CrossrefPubMedGoogle Scholar

  • [35]

    Dochow S, Beleites C, Henkel T, Mayer G, Albert G, Clement J, et al. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal Bioanal Chem. 2013;405:2743–6.CrossrefPubMedGoogle Scholar

  • [36]

    Schie IW, Rüger J, Mondol AS, Ramoji A, Neugebauer U, Krafft C, et al. High-throughput screening Raman spectroscopy platform for label-free cellomics. Anal Chem. 2018;90:2023–30.PubMedCrossrefGoogle Scholar

  • [37]

    Duraipandian S, Traynor D, Kearney P, Martin C, O’Leary JJ, Lyng FM. Raman spectroscopic detection of high-grade cervical cytology: using morphologically normal appearing cells. Sci Rep. 2018;8:15048.CrossrefPubMedGoogle Scholar

  • [38]

    Yosef HK, Krauß SD, Lechtonen T, Jütte H, Tannapfel A, Käfferlein HU, et al. Noninvasive diagnosis of high-grade urothelial carcinoma in urine by Raman spectral imaging. Anal Chem. 2017;89:6893–9.CrossrefPubMedGoogle Scholar

  • [39]

    Tolstik T, Marquardt C, Matthäus C, Bergner N, Bielecki C, Krafft C, et al. Discrimination and classification of liver cancer cells and proliferation states by Raman spectroscopic imaging. Analyst. 2014;139:6036–43.PubMedCrossrefGoogle Scholar

  • [40]

    Hedegaard M, Krafft C, Ditzel HJ, Johansen LE, Hassing S, Popp J. Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using k-means clustering and partial least squares-discriminant analysis of Raman maps. Anal Chem. 2010;82:2797–802.CrossrefPubMedGoogle Scholar

  • [41]

    Vanna R, Ronchi P, Lenferink AT, Tresoldi C, Morasso C, Mehn D, et al. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy. Analyst. 2015;140:1054–64.CrossrefPubMedGoogle Scholar

  • [42]

    Talari AC, Evans CA, Holen I, Coleman RE, Rehman IU. Raman spectroscopic analysis differentiates between breast cancer cell lines. J Raman Spectrosc. 2015;46:421–7.CrossrefGoogle Scholar

  • [43]

    Klossa J, Daliphard S, Troussard X, Vielh P, Manfait M, Angulo J, et al. Using biophotonics techniques to retrieve prognostic intracellular signatures. Irbm. 2011;32:72–5.Google Scholar

  • [44]

    Krafft C, Knetschke T, Funk RH, Salzer R. Studies on stress-induced changes at the subcellular level by Raman microspectroscopic mapping. Anal Chem. 2006;78:4424–9.CrossrefPubMedGoogle Scholar

  • [45]

    Hobro AJ, Pavillon N, Fujita K, Ozkan M, Coban C, Smith NI. Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. Analyst. 2015;140:2350–9.PubMedCrossrefGoogle Scholar

  • [46]

    Konorov SO, Schulze HG, Piret JM, Blades MW, Turner RF. Label-free determination of the cell cycle phase in human embryonic stem cells by Raman microspectroscopy. Anal Chem. 2013;85:8996–9002.PubMedCrossrefGoogle Scholar

  • [47]

    Hsu J-F, Hsieh P-Y, Hsu H-Y, Shigeto S. When cells divide: label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Sci Rep. 2015;5:17541.CrossrefPubMedGoogle Scholar

  • [48]

    Stiebing C, Matthaeus C, Krafft C, Keller AA, Weber K, Lorkowski S, et al. Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy. Anal Bioanal Chem. 2014;406:7037–46.PubMedCrossrefGoogle Scholar

  • [49]

    Matthaus C, Krafft C, Dietzek B, Brehm BR, Lorkowski S, Popp J. Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling. Anal Chem. 2012;84:8549–56.CrossrefPubMedGoogle Scholar

  • [50]

    Naemat A, Elsheikha HM, Boitor RA, Notingher I. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging. Sci Rep. 2016;6:20811.CrossrefPubMedGoogle Scholar

  • [51]

    El-Mashtoly SF, Yosef HK, Petersen D, Mavarani L, Maghnouj A, Hahn S, et al. Label-free Raman spectroscopic imaging monitors the integral physiologically relevant drug responses in cancer cells. Anal Chem. 2015;87:7297–304.PubMedCrossrefGoogle Scholar

  • [52]

    Braeutigam K, Bocklitz T, Schmitt M, Roesch P, Popp J. Raman spectroscopic imaging for the real-time detection of chemical changes associated with docetaxel exposure. Chem Phys Chem. 2013;14:550–3.CrossrefGoogle Scholar

  • [53]

    Salehi H, Derely L, Vegh AG, Durand JC, Gergely C, Larroque C, et al. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy. Appl Phys Lett. 2013;102:113701.CrossrefGoogle Scholar

  • [54]

    Salehi H, Middendorp E, Panayotov I, Dutilleul PY, Vegh AG, Ramakrishnan SK, et al. Confocal Raman data analysis enables identifying apoptosis of MCF-7 cells caused by anticancer drug paclitaxel. J Biomed Opt. 2013;18:056010.CrossrefGoogle Scholar

  • [55]

    Schie IW, Alber L, Gryshuk AL, Chan JW. Investigating drug induced changes in single, living lymphocytes based on Raman micro-spectroscopy. Analyst. 2014;139:2726–33.CrossrefPubMedGoogle Scholar

  • [56]

    Draux F, Gobinet C, Sule-Suso J, Manfait M, Jeannesson P, Sockalingum GD. Raman imaging of single living cells: probing effects of non-cytotoxic doses of an anti-cancer drug. Analyst. 2011;136:2718–25.CrossrefPubMedGoogle Scholar

  • [57]

    Huang H, Shi H, Feng SY, Chen W, Yu Y, Lin D, et al. Confocal Raman spectroscopic analysis of the cytotoxic response to cisplatin in nasopharyngeal carcinoma cells. Anal Meth. 2013;5:260–6.CrossrefGoogle Scholar

  • [58]

    El-Mashtoly SF, Petersen D, Yosef HK, Mosig A, Reinacher-Schick A, Kötting C, et al. Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst. 2014;139:1155–61.PubMedCrossrefGoogle Scholar

  • [59]

    Cheng JX, Xie XS. Coherent Raman scattering. Boca Raton, FL, USA: CRC Press, 2012.Google Scholar

  • [60]

    Wei D, Chen S, Liu Q. Review of fluorescence suppression techniques in Raman spectroscopy. Appl Spectrosc Rev. 2015;50:387–406.CrossrefGoogle Scholar

  • [61]

    Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljkovic M, et al. Molecular pathology via IR and Raman spectral imaging. J Biophotonics. 2013;6:855–86.CrossrefPubMedGoogle Scholar

  • [62]

    Krafft C, Codrich D, Pelizzo G, Sergo V. Raman and FTIR microscopic imaging of colon tissue: a comparative study. J Biophoton. 2008;1:154–69.CrossrefGoogle Scholar

  • [63]

    Krafft C, Belay B, Bergner N, Bergner N, Romeike BF, Reichart R, et al. Advances in optical biopsy–correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging. Analyst. 2012;137:5533–7.CrossrefPubMedGoogle Scholar

  • [64]

    Bergner N, Krafft C, Geiger KD, Kirsch M, Schackert G, Popp J. Unsupervised unmixing of Raman microspectroscopic images for morphological analysis of non-dried brain tumor specimens. Anal Bioanal Chem. 2012;403:719–25.CrossrefPubMedGoogle Scholar

  • [65]

    Bergner N, Medyukhina A, Geiger KD, Kirsch M, Schackert G, Krafft C, et al. Hyperspectral unmixing of Raman micro-images for assessment of morphological and chemical parameters in non-dried brain tumor specimens. Anal Bioanal Chem. 2013;405:8719–28.PubMedCrossrefGoogle Scholar

  • [66]

    Bergner N, Bocklitz T, Romeike BF, Reichart R, Kalff R, Krafft C, et al. Identification of primary tumors of brain metastases by Raman imaging and support vector machines. Chemom Intell Lab Syst. 2012;117:224–32.CrossrefGoogle Scholar

  • [67]

    Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II, et al. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Meth. 2013;5:89–102.CrossrefGoogle Scholar

  • [68]

    Abramczyk H, Brozek-Pluska B, Surmacki J, Jablonska-Gajewicz J, Kordek R. Raman ‘optical biopsy’ of human breast cancer. Prog Biophys Mol Biol. 2012;108:74–81.PubMedCrossrefGoogle Scholar

  • [69]

    Mavarani L, Petersen D, El-Mashtoly SF, Mosig A, Tannapfel A, Kötting C, et al. Spectral histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells. Analyst. 2013;138:4035–9.CrossrefPubMedGoogle Scholar

  • [70]

    Horsnell JD, Smith JA, Sattlecker M, Sammon A, Christie-Brown J, Kendall C, Stone N. Raman spectroscopy - A potential new method for the intra-operative assessment of axillary lymph nodes. Surgeon-J Royal Colleges Surgeons Edinburgh Ireland. 2012;10:123–7.CrossrefGoogle Scholar

  • [71]

    Bielecki C, Bocklitz TW, Schmitt M, Krafft C, Marquardt C, Gharbi A, et al. Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells. J Biomed Opt. 2012;17:076030.PubMedGoogle Scholar

  • [72]

    Minamikawa T, Harada Y, Koizumi N, Okihara K, Kamoi K, Yanagisawa A, et al. Label-free detection of peripheral nerve tissues against adjacent tissues by spontaneous Raman microspectroscopy. Histochem Cell Biol. 2013;139:181–93.CrossrefPubMedGoogle Scholar

  • [73]

    Cals FL, Schut TC, Hardillo JA, de Jong RJ, Koljenovic S, Puppels GJ. Investigation of the potential of Raman spectroscopy for oral cancer detection in surgical margins. Lab Invest. 2015;95:1186–96.CrossrefPubMedGoogle Scholar

  • [74]

    Stewart S, Kirschner H, Treado PJ, Priore R, Tretiakova M, Cohen JK. Distinguishing between renal oncocytoma and chromophobe renal cell carcinoma using Raman molecular imaging. J Raman Spectrosc. 2014;45:274–80.CrossrefGoogle Scholar

  • [75]

    Marzec KM, Wrobel TP, Rygula A, Maslak E, Jasztal A, Fedorowicz A, et al. Visualization of the biochemical markers of atherosclerotic plaque with the use of Raman, IR and AFM. J Biophotonics. 2014;7:744–56.CrossrefPubMedGoogle Scholar

  • [76]

    Lattermann A, Matthäus C, Bergner N, Beleites C, Romeike BF, Krafft C, et al. Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. J Biophotonics. 2013;6:110–21.CrossrefPubMedGoogle Scholar

  • [77]

    Pilarczyk M, Mateuszuk L, Rygula A, Kepczynski M, Chlopicki S, Baranska M, et al. Endothelium in spots - high-content imaging of lipid rafts clusters in db/db mice. PLoS One. 2014;9:e106065.CrossrefPubMedGoogle Scholar

  • [78]

    Kong K, Rowlands CJ, Varma S, Perkins W, Leach IH, Koloydenko AA, et al. Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. Proc Natl Acad Sci USA. 2013;110:15189–94.CrossrefGoogle Scholar

  • [79]

    Kong K, Zaabar F, Rakha E, Ellis I, Koloydenko A, Notingher I. Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy. Phys Med Biol. 2014;59:6141–52.PubMedCrossrefGoogle Scholar

  • [80]

    Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A. A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg Med. 2011;43:143–51.PubMedCrossrefGoogle Scholar

  • [81]

    Ashok PC, Praveen BB, Bellini N, Riches A, Dholakia K, Herrington CS. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon. Biomed Opt Express. 2013;4:2179–86.PubMedCrossrefGoogle Scholar

  • [82]

    Bocklitz T, Braeutigam K, Urbanek A, Hoffman F, von Eggeling F, Ernst G, et al. Novel workflow for combining Raman spectroscopy and MALDI-MSI for tissue based studies. Anal Bioanal Chem. 2015;407:7865–73.CrossrefPubMedGoogle Scholar

About the article

Published Online: 2019-08-30


Citation Information: Physical Sciences Reviews, Volume 4, Issue 10, 20170047, ISSN (Online) 2365-659X, DOI: https://doi.org/10.1515/psr-2017-0047.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in